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 

I. INTRODUCTION 

Cancer is a natural phenomenon and consequently is 

amenable to mathematical and computational description. 

Clinically driven complex multi-scale cancer models are 

capable of producing realistic spatio-temporal and patient-

specific  simulations of commonly-used clinical interventions 

such as radio-chemotherapy. Clinical data-processing 

procedures and computer technologies play an important role 

in this context. Following clinical adaptation and validation 

within the framework of clinico-genomic trials, models are 
expected to advance the prospect of individualized treatment 

optimization, this being   the long term goal of the emergent 

scientific, technological and medical discipline of in silico 

oncology. 

Treatment optimization is to be achieved through 

experimentation in silico i.e. on the computer. Moreover, 

provision of improved insight into tumor dynamics and 

optimization of clinical trial design and interpretation 

constitute short- and mid-term goals of this new domain. 

The IEEE-EMBS technically co-sponsored 5th 

International Advanced Research Workshop on In Silico 
Oncology and Cancer Investigation (5th IARWISOCI) 

(www.5th-iarwisoci.iccs.ntua.gr), being also the transatlantic 

TUMOR project workshop (www.tumor-project.eu), proved 

an excellent opportunity for contributing to the shaping of the 

discipline. The presented papers deal with modeling of tumor 

dynamics and response to treatment from the biochemical to 

the macroscopic level and from basic science to clinics via 

information technology. They have been contributed (some 

by invitation) by top international researchers and research 

groups. The workshop took place in Athens, Greece on 23-24 

October 2012.  

II. IN SILICO ONCOLOGY 

In silico oncology could be formally defined as being "…a 

complex and multiscale combination of sciences, 

technologies and clinical medicine intending to simulate 

 
 

*The workshop was funded by the European Commission through the 

transatlantic TUMOR project (FP7-IST-247754). 

  G.S.Stamatakos is with the Institute of Communication and Computer 

Systems, National Technical University of Athens, 9, Iroon Polytechniou, 

Zofrafos, 157 80, Greece (phone:+30 210 772 2287; fax: +30 210 772 3557; 

e-mail: gestam@central.ntua.gr).  

 

malignant tumor growth and tumor and normal tissue 

response to therapeutic modalities at all biomedically 

meaningful spatio-temporal scales". Its long term goal is to 

quantitatively understand cancer and related phenomena and 

optimize therapeutic interventions by performing in silico 

experiments using clinical, imaging, histopathological, 

molecular and pharmacogenomic data from individual 

patients. In order to achieve such an ambitious goal 

translation of cancer models and oncosimulators into the 

clinical trials arena is a sine qua non condition.   

III. TOWARDS IN SILICO MEDICINE 

In silico oncology serves as an excellent paradigm of the 

emergent generic domain of in silico medicine, which has 

been designated as one of the key research areas to be 

supported by the European Commission’s upcoming research 

funding framework, "HORIZON 2020" 

(http://ec.europa.eu/research/horizon2020/index_en.cfm). 
 Horizon 2020 is the financial instrument implementing the 

Innovation Union, a Europe 2020 flagship initiative aimed at 

securing Europe's global competitiveness. Running from 2014 

to 2020 with an €80 billion budget, the EU’s new program for 

research and innovation is part of the drive to create new 

growth and jobs in Europe. A branch of the program is 

entitled: “Using in-silico medicine for improving disease 

management and prediction.” The current and future 

importance of both in silico oncology and in silico medicine 

is therefore unquestionable.  

IV. ORGANIZING COMMITTEE 

The Organizing Committee of the workshop consisted of 

the following persons  

G. Stamatakos, PhD, ICCS - National Technical University of 

Athens (GR), General Chair 

Ν. Graf, MD, University Hospital of Saarland (DE) 

K. Marias, PhD, Foundation for Research and Technology – 

Hellas (GR) 

M. Akay, PhD, University of Houston (USA) 
R.Radhakrishnan, PhD, University of Pennsylvania (USA) 

D. Dionysiou, PhD, ICCS - National Technical University of 

Athens (GR) 

V. Sakkalis, PhD, Foundation for Research and Technology – 

Hellas (GR) 

N. Uzunoglu, PhD, ICCS - National Technical University of 

Athens (GR)  

In Silico Oncology - Leading the Way at the Dawning of  

In Silico Medicine 

Editorial 

Proceedings of the 2012 5
th

 International Advanced Research Workshop 

on In Silico Oncology and Cancer Investigation – The TUMOR Project Workshop 

 (IARWISOCI)* 

 

Georgios S. Stamatakos, Member, IEEE 

http://www.5th-iarwisoci.iccs.ntua.gr/
http://www.tumor-project.eu/
http://ec.europa.eu/research/horizon2020/index_en.cfm
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 

Abstract— We present a computational modeling and 

simulation approach to delineate molecular-level mechanisms 

of activation of protein receptor tyrosine kinases and describe 

clinical implications of mutations in the Anaplastic Lymphoma 

Kinase (ALK) receptor tyrosine kinase in pediatric 

neuroblastoma. We show here that our results shed molecular-

level insight into the various mechanisms governing such 

transforming mutations at the level of kinase activity and are 

remarkably consistent with experimental observations. We 

expect that the current study on ALK with suitable validation 

will transform our computational approach to enable future 

predictions of driver oncogenic mutations with low false-

positive rates, and can hence serve an important in silico tool 

toward personalized cancer therapy.  

 

I. INTRODUCTION 

Deregulation and mutation of receptor tyrosine kinases 

(RTKs) have been correlated with cancer almost 

immediately after their discovery and purification in the 

early 1980s.  The v-erbb oncogene in the avian 

erythroblastosis virus that was capable of inducing acute 

leukemia encoded was found to encode a constitutively 

active form of the homologous ErbB kinase protein [1].  

With the increased study upon RTKs, the correlation 

between deregulation of RTKs and a variety of ailments and 

particularly in cancer has only grown stronger.  

Deregulation of RTKs in cancers can occur at several points: 

(1) increased ligand production through enhanced local 

autocrine activation; (2) specific gene translocations to 

produce kinase fusions with altered signaling profiles; (3) 

RTK overexpression at the cell surface; (4) mutation of the 

RTK protein to modulate activity; (5) disregulation of 

phosphatase and endocytosis mechanisms to increase RTK 

signal propagation.  Clinically identified activating RTK 

kinase domain mutations have been discovered throughout 

many cancers [1].  The results form Catalog of Somatic 

Mutations In Cancer (COSMIC), which has a much more 

thorough listing for all the mutations and all cancers.  The 

oncogenic mutations cluster near the characteristic aspects 

of kinase activation. The increased kinase activity increases 

the dependency of tumor upon the RTK and inhibition of the 

RTK is a viable route for cancer therapeutics.  The 

epidermal growth factor receptor (EGFR) and one of its 

small molecule inhibitor, gefitinib, is a canonical example of 

RTKs, cancer and targeted therapeutics [1]. However, 

examination of the tumors revealed sets of mutations in the 

 
*Research supported by US NSF/CBET, US NIH/NIBIB, and US XSEDE 

grants to R. R. and by US NSF/GRF fellowship to P. J. H. 

P. J. Huwe is with University of Pennsylvania, Biochemistry and Molecular 

Biophysics Graduate Group, Philadelphia, PA 19104 (email: 

pjhuwe@gmail.com)  

R. Radhakrishnan is with University of Pennsylvania, Departments of 

Bioengineering, Chemical and Biomolecular Engineering, Biochemistry and 

Biophysics, Philadelphia PA 19104 (corresponding author phone: 215-898-

0487; fax: 215-573-2071; e-mail: rradhak@seas.upenn.edu).  

 

EGFR tyrosine kinase domain revealed that only a sub-set of 

the tumors harboring these EGFR mutations are 

exceptionally sensitive to inhibition through Gefitinib [1].  

There are several other small molecule tyrosine kinase 

inhibitors (TKIs) as well as antibodies already approved by 

the FDA and in use in the clinical settings [1]. Hence, it is 

important to understand RTK activation mechanisms at the 

molecular level to help design efficacious therapeutics.  

Computational methodologies offer a powerful, quantitative, 

and complimentary alternative for the study of intracellular 

kinase domains, which if utilized correctly can predict 

effects of mutations on RTK activation mechanisms [1].  

 Neuroblastoma is an early childhood cancer that arises 

from neural crest tissue along the sympathetic chain 

ganglion in the developing autonomic nervous system.  

Neuroblastoma is the most common extracranial pediatric 

solid tumor and the most common malignancy diagnosed in 

the first year of life [2].  Approximately half of the patients 

diagnosed with the disease are classified as “high-risk” and 

exhibit a very aggressive phenotype [3].  Even with the use 

of intensive chemotherapy, radiotherapy, surgery, and bone 

marrow transplantation, the 5 year survival rate among 

these high-risk patients remains quite low—a mere ~40% 

[2,3].  Those fortunate few who do survive the disease suffer 

chronically from multiple negative sequelae.  Currently, no 

FDA-approved molecularly targeted approaches exist for 

treating the disease.  The need for improved neuroblastoma 

therapeutics is urgent. 

Recently, Maris et al. have identified germline and 

somatic mutations in neuroblastoma patients that cause 

increased tyrosine kinase activity in anaplastic lymphoma 

kinase (ALK) [3]. ALK activation in Neuroblastoma appears 

to be a result of point mutations rather than gene fusions [2]. 

Inhibition of ALK in neuroblastoma cell lines carrying 

amplified or mutated ALK alleles results in compromised 

downstream signaling and cell growth and ALK has 

emerged as a potential therapeutic target for neuroblastoma 

patients. 

With a focus on the discovery and exploitation of 

oncogenic driver mutations, current approaches typically 

involve collaborative partnership between cancer geneticists, 

structural, computational and cellular biologists, drug 

development experts, and clinical trials experts. The 

different facets of research activities include: (1) Genomics- 

access to thousands of patient genotypic samples; (2) 

Patients- large developmental therapeutics team with 

referrals from multiple nations; (3) Samples- investment in 

the collection of patient samples including thousands of 

tumor, DNA, RNA and protein samples, all with rich 

clinical annotation and outcomes data. This includes a rich 

bank of dozens of human and murine neuroblastoma-derived 

cell lines; (4) Clinical trials infrastructure; (5) Structural 

Biology- structure elucidation of proteins and computational 

Computational Methodology for Mechanistic Profiling of Kinase 

Domain Mutations in Cancers* 

Peter J. Huwe, and Ravi Radhakrishnan 
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elucidations of enzymatic mechanisms and studies of signal 

transduction.  

 Here, we will focus on the delineation of activation 

mechanisms using computational techniques and the central 

problem of oncogenic mutations in RTKs as key mediators 

of human cancer. Development of computational tools 

necessary to understand the structural consequences of 

genetic mutations in cancer will facilitate our quest for 

molecular-level insight into rational mechanisms for drug 

development and for combating drug resistance.  Current 

outlook on the receptor tyrosine kinase ALK especially 

provides an important illustration of how this approach can 

revolutionize cancer treatment.  Namely, oncogenic driver 

mutations in ALK were identified in neuroblastoma patients, 

and shown to cause activation of the receptor – immediately 

indicating the use of existing ALK kinase inhibitors in this 

patient population.  Individual ALK-activating mutations 

show different inhibitor sensitivities, creating an urgent 

need to understand the structural basis for their effects in 

order to guide treatment choice. Emergence of resistance 

mutations, as also seen with kinase-targeted inhibitors of 

ABL (in Chronic Mylogenous Leukemia) and EGFR (in 

Non-Small-Cell Lung Cancer) creates a need to understand 

their spectrum and the origin of their effects through our 

integrated approach.   

II. MODELING METHODS 

A. Molecular Dynamics 

The inactive ALK wild-type tyrosine kinase domain 

structure was taken from 3L9P PDB (1.80 Å resolution) [4].  

Missing loop residues 1117-1122 were modeled on with the 

loop-modeling algorithm LOOPY, as implemented in 

MODELLER v9.8.  Mutant structures were generated with 

MODELLER v9.8 by making point mutations to the 3L9P 

structure.  The active ALK homology model was generated 

with homology modeling program MolIDE and the 

SCWRL4 rotamer library, using the 1IR3 PDB structure 

(active insulin receptor kinase) as the template (46% 

sequence identity; 63% sequence conservation).  All 

structures were modeled in apo form; for details of the 

methods, see [1,5,6]. 

All structures were subjected to the same molecular 

dynamics (MD) protocol.  Hydrogen atoms were added to 

the structures with Automatic PSF Generation Plugin v1.3 

implemented in VMD 1.8.6.  Consistent with a 

physiological pH of 7.0, all histidines were modeled with a 

+1 protonation state on the d-nitrogen. The Solvate Plugin 

v1.5 and Autoionize Plugin v1.3 implemented in VMD were 

used to construct an electroneutral waterbox with 15 Å 

TIP3P water padding and 0.15 M Na+/Cl- concentration.  

All Na+ and Cl- ions were placed at least 5 Å away from 

protein atoms and each other.  Systems contained 

approximately 61000 atoms.  

All MD simulations were carried out with NAMD v2.8 

molecular dynamics software package using CHARMM27 

force field parameters.  Periodic boundary conditions were 

used throughout.  The particle mesh Ewald algorithm was 

used to treat long-range electrostatic interactions.   An 

integration timestep of 2 fs was used.  Bonds between 

hydrogens and heavy atoms were constrained to their 

equilibrium values, with the velocity correction being 

performed by the RATTLE algorithm.  Rigid waters were 

treated with the SETTLE algorithm.  Long-range 

nonbonded van der Waals (VDW) interactions were treated 

by applying a smooth switching function at 10 Å with a 

cutoff distance of 12 Å. To eliminate unfavorable contacts, 

the solvated systems underwent an energy minimization 

using a conjugate gradient algorithm; they were then 

gradually heated to 300 K.  Constant temperature and 

pressure (NVT) simulations using a Nosé-Hoover Langevin 

piston were performed at 300 K and 1 atmosphere pressure 

to equilibrate the volume of the solvation box.  

Subsequently, constant temperature and volume (NVT) 

simulations were run on the system.  After an equilibration 

period, 40 ns of NVT simulation were completed on each 

structure.  

B. Hydrogen Bond Analysis  

Hydrogen bond (H-bond) analysis was performed on the 

last 1000 frames (20 ns) of trajectory for each system using 

the HBonds Plugin v1.2 in VMD.  Hydrogen-bond cutoff 

lengths of 3.2 Å and H-O-H angle cutoffs of 150˚ were 

chosen to include H-bonds of moderate strength.  The 

occupancies (Y) for each residue-to-residue hydrogen bond 

range from 0% to 100% across the last 20 ns of trajectory in 

each system. A scoring function was created to analyze how 

active-like the hydrogen bond networks were for each 

system.  The scoring process is outlined below. (1) For each 

hydrogen bond, calculate the difference in occupancies 

between the active (A) wildtype (WT) and inactive (I) WT 

systems ( ∆WT  = YI
WT – YA

WT ). (2) For each bond, if  |∆WT| 

> 40.0%, calculate the difference in occupancies between the 

active WT and inactive mutant (MUT) for each mutation 

(∆MUT  = Y
I
WT – Y

A
MUT ). (3) If ∆MUT/∆WT > 0.5, then the 

bond receives a binary activation score of 1; otherwise, it 

receives a score of 0. The scores were tallied separately for 

the activation loop (A-loop) and the C-helix.  Any bonds 

bridging the two were counted in both analyses.  For the A-

loop (comprising 15 H-bonds), a collective score of 9 or 

greater was considered to be activating the kinase.  For the 

C-helix (comprising 7 H-bonds), a collective score of 4 or 

greater was considered activating. The scores are 

summarized in Table 1. 

C. Solvent Accessible Surface Area (SASA) 

Solvent accessible surface area (SASA) values were 

calculated in VMD using the measure SASA module using a 

probe radius of 1.4 Å.  The SASA was calculated on a per-

residue basis for the residues forming the hydrophobic core. 

The SASA values  (in units of Å2) were averaged over all 

steps of the MD trajectory, from which the mean SASA 

values were computed. Mutant systems were scored as 

activating as follows: (1) SASA values were normalized 

using the expression SASA(MUT,I)-SASA(WT,I)/ 

SASA(WT,A)- SASA(WT,I); (2) If the normalized SASA 
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scores were less that -2.5 for at least two residues or more, 

the mutant system was scored as activating (with a score of 

1); (3) If the sum of the SASA scores of residues that 

showed a large difference between the active and inactive 

states in the WT were negative, the mutant was scored as 

activating; (4) If the sum in (3) was positive but less than 

1.0, but at least one of the residues had a score of <-4.0, the 

mutant was scored as activating, see Table 1. 

III. CATEGORIZATION AND ACTIVATION SCORES 

 (1) Activation mechanism based on destabilizing the C-

helix interactions in the inactive conformation: in recent 

computational work on kinase domains of ErbB receptors, 

we suggested that inactive and active conformations have 

distinct signatures of the hydrogen bond networks, 

particularly involving the residues of the C-Helix [5, 6]. A 

similar analysis was performed on various mutant systems of 

the ALK kinase domain, see methods, focusing on the C-

Helix. A score in this category represents hydrogen-bonding 

patterns of C-helix residues showing the characteristics of 

the active-wild type conformation; see Table 1. The 

mutations were scored p (proximal) if the site of the 

mutation was part of the C-Helix or proximal (<6 Å) to the 

C-Helix residues; the choice of 6 Å represents proximity in 

terms of 1-2 amino acid residues. The mutations in this 

category are, not surprisingly, mostly clustered proximal to 

the C-Helix, A-loop, and the active site. However a small 

number of mutations in the C-lobe and the hydrophobic core 

are also featured in this category.  

(2) Activation based on A-loop interactions: mutations, 

which were scored in this category, are clustered in regions 

proximal to the active site and similar to those in the C-

Helix category, see Table 1. The mutations were scored p 

(proximal) if the site of the mutation was part of the A-loop 

or proximal (<6 Å) to the A-loop residues. 

We note that we combine the score based on A-loop and 

C-Helix interaction using the logical AND function to 

evaluating the activation status. The rationale for this choice 

is based on the recognition that A-loop in most kinases is 

flexible with multiple conformational (locally stable) states, 

which implies numerous compensatory interactions between 

active and inactive conformations. Scoring a mutant based 

on this category based on similarity with the active 

conformation alone does not take into account the rugged 

conformational free energy landscape of the A-loop due to 

the compensatory interactions.  

(3) Predictions based on hydrophobic interactions: In our 

earlier computational work on ErbB kinase systems, we 

introduced a method to score hydrophobic interactions based 

on SASA analysis (see methods) [5]. A similar analysis on 

ALK mutant systems is presented in Table 1.  There is a 

significant difference between the SASA of the residues of 

the hydrophobic core in the active and inactive 

conformations. The sum total of the SASA for these residues 

is significantly higher in the inactive conformation relative 

to active.  Notably, Y1278 (which is one of the tyrosines 

located on the activation loop) is involved in stacking 

interactions with some of the residues of the hydrophobic 

core. In the active conformation, Y1278 is thrust out into 

solvent causing the hydrophobic core to be significantly 

more compact. As described in the methods section, 

mutations that increase the SASA of the hydrophobic core 

are scored as activating (as they further destabilize the 

inactive conformation). The mutations were scored p 

(proximal) if the site of the mutation was proximal (<10 Å) 

to Y1278; the choice of 10 Å represents the ability to 

directly impact Y1278 or to disrupt a solvation sphere of 

that radius surrounding Y1278. The mutations scored in this 

category are located in the hydrophobic core, but also 

include a few that are proximal to the active site.  

IV. RESULTS AND DISCUSSION 

We hypothesize that classifying mutations based on 

similarity in activation scores across different categories (see 

Table 1) will reveal conserved mechanisms of kinase 

activation and regulation. Maris et al. [3] have identified 

>25 mutations to the ALK-tyrosine kinase domain (TKD) in 

their neuroblastoma patients.  Some of the mutants are 

known to be activating, while the role and significance of 

others is unclear.  Some may only be passenger mutations 

(i.e. mutations that do not drive the cancer but instead are 

merely present). Almost all of the activating ALK mutations 

identified in neuroblastoma patients have been localized to 

the TKD of ALK. Thus, we focused our computational study 

on a detailed understanding of activation of the TKD. This 

approach is important for rational design of inhibitors to 

block ALK activation in neuroblastoma patients.  Because 

RTKs have dissimilar inactive TKD states, they have 

different mechanisms of activation.  However, some 

commonalities do exist.  Typically, the molecular 

mechanism in RTK-TKDs for ‘switching’ from the unique 

inactive state to the activated state involves 

autophosphorylation of the activation loop (A-loop) [1].  

This autophosphorylation generally disrupts ‘cis-

autoinhibitory’ interactions and also stabilizes the active 

conformation. We hypothesize that active and inactive states 

are differentially stabilized by molecular (hydrophilic and 

hydrophobic) interactions and that activating mutations alter 

the relative occupancy of these states by destabilizing the 

inactive or stabilizing the active state. Lemmon and co-

workers have shown that the two most common mutants, 

R1275Q and F1174L, display increased tyrosine kinase 

activity compared to wild type controls both in vivo and in 

vitro [2].  It remains unclear, however, exactly how these 

mutations functionally cause the kinase to be constitutively 

active.  

Based on the MD simulations of each of the mutant 

systems (see Table 1) in the inactive conformation, and the 

WT system in both active and inactive conformations (see 

modeling methods for details), we have assigned activation 

scores for the different mutants based on hydrogen bond 

analysis of activation loop and C-helix residues (see Table 

1), based on global motion (data not-shown), and based on 

hydrophobic analysis (Table 1); these scores enable us to 

classify the different mutant systems into various sub-
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clusters as summarized in Table 1. A score of 1 represents a 

prediction of activation under the given category. To further 

qualify the activation scores, we categorize each mutation as 

proximal (p) or distal (d) for a given category of activation 

based on the distance between the site of mutation and the 

sub-region relevant to the category (see Table 1). Based on 

the activation scores under different categories and based on 

the proximity of the site of mutation, we record an overall 

(weighted score) prediction of the activation status (see 

Table 1). The mutations with activation scores in A-loop 

and C-Helix categories are scored as activating only if they 

have recorded an activation score in both categories and are 

proximal to at least one of the regions (namely A-loop or C-

Helix). Mutations with scores in the SASA categories are 

weighted to yield an overall activation status if they are 

proximal to Y1278, an important residue impacted by the 

hydrophobic core. There is a significant difference between 

the SASA of the residues of the hydrophobic core in the 

active and inactive conformations. Notably, Y1278 (which is 

one of the tyrosines located on the A-loop) is involved in 

stacking interactions with some of the residues of the 

hydrophobic core. In the active conformation, Y1278 is 

thrust out into solvent causing the hydrophobic core to be 

significantly more compact. Our results in Table 1 provide a 

rational framework not only in terms of categorizing 

different mutations based on their functional status (namely 

activating or inactivating), but also categorize them 

according to a possible mechanism of activation: namely (1) 

disruption of C-Helix/A-Loop autoinhibitory interactions in 

the inactive state, (2) destabilizing the hydrophobic core, (3) 

impacting Y1278 directly independent of hydrophobic 

effect. Other effect such as (4) impacting nucleotide binding, 

(5) disrupting the catalytic machinery, (6) distal mutations 

impacting overall kinase conformation are not considered in 

the current study and will be pursued in the future. Overall, 

the computational results in Table 1 are remarkably 

consistent with experimental data on the functional status of 

kinase activation (based on Kcat values). 

V. CONCLUSION 

We classified the type of the mutation (hydrophilic to 

hydrophobic, polar to non polar etc.) and its location (A-

loop, C-helix, P-loop, N-loop etc.) and ascribed a 

mechanism-based functional significance of the mutation on 

the kinase activation. Based on our recent work [1], we 

already have demonstrated the success of this approach on 

the effect of mutations on the activation mechanisms of 

ErbB family kinases. Analyzing the effects of each 

activating mutation on ALK protein dynamics described 

here helps to reveal how the mutation functionally changes 

the intramolecular interactions within the kinase.  The 25 

mutations identified by Maris et al. are found in different 

regions of the TKD [3], and different activating mutations 

have been shown to have different sensitivities to inhibitors 

[2].  Our studies presented here show that not all mutations 

have the same mechanism of constitutive activation. 

Collectively, the results are helpful in the rational design of 

mutant-specific inhibitors and to rationalize the effect of 

mutation on inhibitor (Crizotinib) sensitivity in a given 

cohort of patients. Our results also enable the delineation of 

molecular events surrounding the activation mechanisms 

thereby complementing traditional experiments, which often 

do not provide the molecular context to ongoing clinical and 

biochemical studies. We expect that the current study on 

ALK with suitable validation will transform our 

computational approach to enable future predictions of 

driver oncogenic mutations with low false-positive rates, and 

can hence serve an important in silico tool toward 

personalized cancer therapy.  

ACKNOWLEDGMENT 

We thank Mark Lemmon, Yael Mosse, and John Marris 

for insightful discussions throughout this work.  

REFERENCES 

[1] A. J. Shih, S. E. Telesco, R. Radhakrishnan, “Analysis of somatic 

mutations in cancer: molecular mechanisms of activation in the ErbB 

family of receptor tyrosine kinases”, Cancers, vol. 3, no. 1, pp. 1195-

1231, March 2011. 

[2] S. C. Bresler, A. C. Wood, E. A. Haglund, J. Courtright, L. T. Belcastro, 

J. S. Plegaria, K. Cole, Y. Toporovskaya, H. Zhao, E. L. Carpenter, J. G. 

Christensen, J. M. Maris, M. A. Lemmon, Y. P. Mossé, “Differential 

inhibitor sensitivity of anaplastic lymphoma kinase variants found in 

neuroblastoma.” Sci. Transl. Med., vol. 3, no.  108, p. 114, Nov 2011. 

TABLE I   SUMMARY OF COMPUTATIONALLY PREDICTED 

ACTIVATION SCORES AND COMPARISON WITH EXPERIMENT 

M
u

ta
n

t 

A
ct

iv
at

io
n

 S
ta

tu
s,

 

ex
p

er
im

en
t 

A
-l

o
o

p
 

H
 B

o
n

d
s 

S
co

re
 

C
-H

el
ix

 

H
 b

o
n

d
s 

S
co

re
 

S
A

S
A

 S
co

re
 ¶

 

W
ei

g
h

te
d

 

S
co

re
 

A1200V 
WT 

1/d 1/d 
 WT 

D1349H 
WT 

1/d  
 WT 

F1174L 
+ 

  
1/p A 

F1245C 
+ 

  
1/p A 

I1170N 
+ 

1/p 1/p 
1/p A 

I1183T 
+ 

1/d 1/p 
 A 

I1250T 
WT 

  
 WT 

L1204F 
WT 

1/d 1/d 
1/d WT 

T1343I 
WT 

  
 WT 

V1229M 
WT 

1/d 1/d 
1/d WT 

Y1278S 
+ 

1/p 1/p 
0/p A 

Column 1 describes the mutation and Column 2 summarize the 

activation status based on experimentally determined Kcat values: 

WT=wild type-like (< Kcat for wildtype), +=activating   (>5-fold 

increase in Kcat). Columns 3-5 summarize the computational 

predictions of the activation scores. A score of 1 is given to each 

mutant predicted by a particular method to be activating. The scores 

are further qualified by p=proximal and d=distal based on how 

proximal/distal the given mutation is to the given sub-region of the 

protein (indicated by the column title). Column 6 provides the 

weighted score by factoring the individual scores in columns 3-5 and 

by proximity status. 



13 

 

[3] J. M. Maris, Y. P. Mosse, J. P. Bradfield, C.Hou, S. Monni, R. H. Scott, 

S. Asgharzadeh, E. F. Attiyeh, S. J. Diskin, M. Laudenslager, C. Winter, 

K. A. Cole, J. T. Glessner, C. Kim, E. C. Frackelton, T. Casalunovo, A. 

W. Eckert, M. Capasso, E. F. Rappaport, C. McConville, W. B. London, 

R. C. Seeger, N. Rahman, M. Devoto, S. F. Grant, H. Li, H. Hakonarson, 

“Chromosome 6p22 locus associated with clinically aggressive 

neuroblastoma,” N. Engl. J. Med., vol. 358, no. 24, pp. 2585-93, Jun 

2008. 

[4] C. C. Lee, Y. Jia, N. Li, X Sun, K. Ng, E. Ambing, M. Y. Gao, S. Hua, 

C. Chen, S. Kim, P. Y. Michellys, S. A. Lesley, J. L. Harris, G. 

Spraggon, “Crystal structure of the ALK (anaplastic lymphoma kinase) 

catalytic domain,” Biochem. J., vol. 430, no. 3, pp. 425-37, Sep 2010. 

[5] A. J. Shih, S. E. Telesco, S. H. Choi, M. A. Lemmon, R. Radhakrishnan, 

“Molecular dynamics analysis of conserved hydrophobic and hydrophilic 

bond interaction networks in ErbB family kinases,”  Biochem. J., vol. 

436, no. 2, pp. 241-251, Jun 2011.  

[6] S. E. Telesco, R. Radhakrishnan, “Atomistic insights into regulatory 

mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics 

study,”  Biophys. J., vol. 96, no. 6, pp. 2321-2334, Mar 2009. 

 

 

 



14 

 

 

Abstract— Tumor growth involves numerous biochemical 

and biophysical processes related to the invasion of surrounding 

tissue and metastasis. Such phenomena occur at different scales 

of time and space. The desire to understand the interactions of 

these complex processes has given rise to various computational 

models allowing for multiple variable modeling using 

continuous, discrete and the most recent hybrid approaches. 

This paper presents a hybrid mathematical model of solid 

tumor invasion that incorporates both continuous macro-scale 

and discrete cell-level descriptions. Cell-based description 

reflects individual cell movement and state, while the 

continuous part formulates the nutrient supply of the tumor. In 

the presented model, apart from the usage of homogenous 

oxygen supply, intratumoral nutrient sources are introduced. 

I. INTRODUCTION 

RIMARY solid tumors are thought to arise from nodes of 
cells that have mutated in certain key genes. The key 
difference of the transformed cells is that they proliferate 

in an unsupervised way. As the tumor increases in size, the 
uncontrolled alterations lead to more complex tumor 
behaviors, such as metastasis and angiogenesis. The tumor at 
its initial stage or when a new metastasis emerges goes 
through simpler avascular growth with nutrient being 
supplied from the surrounding healthy tissue. When tumor 
cells exceed the capacity of the medium to support further 
growth, blood vessels from the pre-existing vascular network 
are recruited. Most models try to incorporate either the early 
avascular phase or the more complex vascular phase [1]. 

In order to perform in silico experiments there is a need to 
study the various phases and scales describing different levels 
of biocomplexity. Discrete event mapping allows for the 
description of individual cell dynamics according to some 
stochastic rules and are mainly applicable at the sub cellular 
and cellular levels, whereas continuum approaches more often 
assume that solid tumor behavior can be predicted in terms of 
its global interaction with the surrounding and underlying 
tissue properties and a few internal parameters related to the 
proliferation rate [2][3][4][5]. 

In this work we present a hybrid model where tumor 
growth is described using a discrete approach, under 
homogenous nutrient supplies formulated using continuous 
mathematics. Additional sources centered on selected 
outermost points of the tumor introduce introtumoral 

 
*This work was supported by the community initiative Program 

INTERREG III, Project “YΠEPΘEN”, financed by the European 

Commission through the European Regional Development Fund and by 

National Funds of Greece and Cyprus. 

G. Tzedakis, E. Tzamali, V. Sakkalis, A. Roniotis and K. Marias are with 

the Institute of Computer Science, FORTH, Vassilika Vouton, GR-70013 

Heraklion, Crete, Greece (gtzedaki; tzamali; sakkalis; roniotis; 

kmarias}@ics.forth.gr). 

heterogeneity. This is done to show the existence of 
dependency between the variance in the nutrient 
concentration and the tumor morphology. Also such process 
could describe the transition from avascular to early vascular 
phase. 

II. BACKGROUND 

As stated earlier, various models have been introduced in 
an effort to research or predict tumor growth. Some models 
utilize continuous equations to describe tumor growth, while 
others describe cancer cells as discrete automata-like entities. 
The key difference is that the former group of models 
provides qualitative results while the latter group offers 
quantitative results. Continuous models do not permit analysis 
of small-scale structures and patterns. Discrete models, being 
harder to rescale, are deemed inappropriate when large cell 
populations are concerned. Hybrid models are favored due to 
their ability to enlist the best elements out of both worlds [6]. 
Hybrid models use the continuous part to describe the tumor 
environment and the discrete part to describe individual 
cancer cells. It should be noted however that each of the 
aforementioned models are often developed independently 
from different specialized research groups even if there is a 
possibility of linking currently fragmented approaches 
increasing the potential of examining cancer under a global 
prism that consolidates crucial information from different 
levels of complexity [7]. 

III. MODEL 

The model presented in this paper is classified as hybrid. 
It consists of a continuous part and a discrete part, which 
constantly interact. The continuous part describes the 
microenvironment around the tumor cells, while the discrete 
part aims to model the cancer cells. With fixed time step  , 
models are consecutively updated. The continuous part is 
executed first driving the discrete part that is executed next. 
Both parts are described in the following sections. 

A. Continuous Model part 

In most hybrid models the continuous part is used to 
describe the tumor environment [8][9]. It is well known that 
cancer cells need nutrients and oxygen to grow and invade. It 
is assumed that oxygen is the only limited substrate critical 
for growth and proliferation. In addition, it is assumed that 
(avascular phase) oxygen is produced at the same rate by 
every healthy tissue. In other words, sources exist in places 
not populated by cancer cells. Oxygen diffuses and decays 
naturally into the extracellular matrix, but is consumed by the 
tumor cells with an increased rate. The resulting diffusion 
equation that describes oxygen supply is: 

Hybrid Model for Tumor Spheroids with Intratumoral Oxygen 

Supply Heterogeneity* 
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where             are positive constants describing the 
oxygen concentration, the oxygen diffusion coefficient, 
production rate, cancer uptake and natural decay rates, 
respectively. Term   can be 0 or 1, representing the absence 
or, respectively existence of a living tumor cell, the term   
can be any number but we limit its use to integer values, by 
introducing a weight for the source at each individual grid 
point. 

 The equation is solved on a [   ]  [   ] square grid 
using no-flux boundary conditions. The parameter values are 
rendered dimensionless in such a way that a square of the grid 
represents 25 μm (approximately the size of a single cell). 
This is important for the validity of the interactions between 
the continuous and discrete parts of the model. Consumption 
rate   is determined in such a fashion that the overall oxygen 
flow remains stable through the tumor growth, resembling the 
growth of tumor spheroids. We ensure that the total oxygen 

production rate will be constantly   ̃  , the rate with which 
oxygen is provided when only healthy tissue exists. Thus,    
is determined by: 

   
 ̃   

     
 

B. Discrete Model part 

The discrete modeling part of the presented hybrid model 
assumes the following:  

 A normal square lattice describes the area of 

interest. 

 Every grid point is considered to be a cell. 

 Healthy and dead cells are ignored. 

 Living cancer cells can have two states, active or 

quiescent. The active state is the state at which the 

cell is preparing for proliferation. The quiescent 

state means that the cell has been prepared for 

proliferation but cannot yet proliferate due to lack of 

free neighbors. 

 All cancer cells are arbitrarily chosen for execution 
of the discrete life cycle. 

A flow diagram describing the different steps of the model 
execution is depicted in Figure 1.  

The first step of the tumor cell life cycle is to check 
whether the lattice point at hand has enough oxygen. If the 
oxygen is below a viable threshold then the cell dies. Dead 
cancer cells, like healthy cells, are treated as empty space 
(cells can proliferate and replace them) but are not considered 
as sources of oxygen. In the case that the cell has sufficient 
oxygen, then its age is increased by   hours.  

If the current age of the cell passes the proliferation age 
threshold then the cell “attempts” to proliferate, if it fails to 
proliferate it enters the quiescent state. Failure to proliferate 
occurs if there is not enough space for the cell to proliferate to 
one of its eight neighbors. In the case that the proliferation 
successfully takes place (one or more neighboring free spaces 
are found) the proliferation age, in our case 16 hours, is 
subtracted from the cell age and an identical copy of itself is 

placed at a free space. The location for the new cell is chosen 
randomly among the neighboring free spaces. 

If a cell stays in the quiescent state, due to being unable to 
proliferate, it does not age since it already has been prepared 
for proliferation. Note, however, that it will die if the oxygen 
drops below the viability threshold. The only way for a cell to 
leave the quiescent state is if a neighboring empty space is 
made available in order to proliferate.  

If a quiescent cell finds space to proliferate then (since its 
age is reduced) it is considered active and prepares to 
proliferate again. Apart from following a slightly different life 
cycle from active cells, quiescent cells also consume half the 
oxygen that is consumed by their active counterparts. 

 

IV.  IMPLEMENTATION  

We have implemented the described model in Math 
Works™ Matlab (version 7.1). As there is no analytical 
solution to the particular diffusion equation, we approximated 
the solution numerically. In particular, for the solution of the 
equation, finite differences were used (Crank-Nicolson 
scheme) [10][11]. To ensure numerical accuracy and stability, 
the time step used was one fifth of the spatial step. To 
effectively approximate the solution of the sparse linear 
systems of equations that are derived when implementing the 
Crank-Nicolson, the Minimal Residual method was used. 

 
Figure 1. A flow chart that describes the life cycle steps of the 

discrete tumor cell 
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Figure 2. Each row contains the results from the respective experiment: the first row contains the results from the first experiment, the second row from the second 

experiment and the third row from the third experiment. The first column depicts cancer cells after 15 iterations (5 fictious days). The central column illustrates 

cancer cells after 30 iterations (10 fictious days). Blue, green and red coloured cells indicate active living cells, quiescent living cells and dead cells, respectively. 
The third column represents the source/sink weights after 30 iterations.  

 
V. RESULTS 

Our experiments aim at modeling the difference between 
the avascular and the early vascular phase and studying how 
tumor morphology is affected. In the avascular phase, the 
cancer receives the nutrients from the environment at a steady 
rate, uniformly from all the directions. In the vascular phase, 
due to angiogenesis the nutrient flow starts to depend on the 
vascularity, in other words it becomes less homogenous. The 
parameter values used are shown in Table I. Initial cancer 
population was 225 cells positioned on the center of the grid 
for every scenario. As a precaution, to avoid the simultaneous 
proliferation of all the cells, the initial population received 
random initial ages varying from 0 to 8 hours (the discrete 
time hump value). 

The avascular phase is modeled by adding every healthy 
cell as a source of weight of 1 in the set of sources  . The 
vascular phase is modeled by adding sources/sinks to reduce 
the homogeneity in the oxygen production.  

The first experiment (Fig. 2 - 1st Row) assumes that the 
sources are equivalently distributed on the healthy tissues. 
This describes the homogneous oxygen supply observed in 
the avascular phase. On the top left corner of Figure 2 we can 
see the cancer after 15 iterations (5 fictious days). The blue 
cells are the active proliferating ones and the green cells are 

the cells in the quiescent state. The center image at top row 
shows the cells after 30 iterations. Red coloured cells are the 

TABLE I.  PARAMETER VALUES 

Symbol 
Description Value 

  Grid size 400 

  Discrete time jump 8 hours 

   Oxygen diffusion parameter 0.25 

 ̃ 
Healthy tissue initial oxygen 

production rate 
6.25 

  Acive cancer cell oxygen uptake 161 

  Oxygen decay 0.0125 

 Cancer cell proliferation age 16 hours 

 Viable oxygen threshold .05 
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cells that have died due to lack of oxygen. The top right 
cornered figure shows the source weights. It is evident that 
after 30 iterations (10 fictious days) the live cancer has 
formed a rim of averagely 8 cells.  

As a second experiment (Fig. 2 – 2nd Row), after the 
tumor cell population exceeds 250 cells, 4 sources are added 
to create less homogenous oxygen concentrations. In an 
attempt to model the fact that through the process of 
angiogenesis new sources are created on the outer layers of 
the cancer, the locations of the sources move as the cancer 
expands on the grid. The sources are centered at the points 

(       ) (       ) (       ) and (       ) 

where             and     are the left, right, top and bottom 
edges that the cancer has proceeded at that given time. The 
range   of the sources depends on the number of the living 
cancer cell population   and is given by:  

    ⌈    ⁄ ⌉ 

where ⌈ ⌉ denotes the ceiling function. Thus, since the sources 
are square shaped, each source is comprised of      grid 
points. The weight of each extra source point is 5. In other 
words, the oxygen production rate of these sources is five 
times the rate of the normal sources while the total flow 
remains the same. The second row of figure 2 shows the 
respective values for the second trial. On the rightmost image 
the population depedent weighted sources are illustrated. In 
comparison to the first experiment, after 30 iterations the 
necrotic core is smaller but the tumour morphology remains 
the same. The average value of the living cell rim radius is 
increased to 24. 

The third experiment (Fig. 2 – 3rd Row) assumes the 
same sources described previously. The difference this time is 
that the first two sources have weight of -5 effectively turning 
them into sinks. The final row of figure 2 shows the cancer 
population on the left and central illustrations after 15 and 30 
iterations respectively. It can be observed that the tumor 
morphology very soon begins to vary from the previous 
spherical to a shape that resembles an ellipse. The respective 
weighted sources after 30 iterations can be seen in the bottom 
right corner. 

VI. CONCLUSION 

In our experiments we showed that solid tumor 
morphology can be affected by tampering with the nutrient 
source morphology when different weighted sources are 
applied on a normal grid. One important aspect is that the 
total oxygen flow rate remained unaffected.  

Future work includes the addition of interaction points 
between the discrete and the continuous model components. 
Such interactions include the local nutrient values affecting 
individual cell proliferation time and oxygen consumption 
rate. Beneficial for the discrete model would also be the 
addition of more cell states with varying behaviors and the 
ability of cell movement to adjacent grid points. Finally, we 
plan to apply filters to the nutrient values before feeding them 
to the aforementioned moving procedure, in order to force the 
appearance intricate structures of tumor morphology, e.g. 
fingering patterns that appear in aggressive and metastatic 
real-life tumors.  
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 

Abstract— In this paper, a previous continuum approach 

describing vascular tumor growth under angiogenic signaling 

[1] is developed and extended via the inclusion of bevacizumab 

pharmacokinetics.  The modeling approach to the problem 

addressed includes inter alia the building of the model (selection 

of equations, related assumptions, coupling with a 

pharmacokinetic model tailored to the bevacizumab paradigm, 

implementation and numerical solution) as well as a study of the 

vascular tumor growth model with results for free growth and 

an intermittent bevacizumab mono-therapy schedule. 

I. INTRODUCTION 

Just in USA, an estimated 39920 breast cancer deaths, 
160340 lung cancer deaths and 20130 lymphoma deaths are 
expected to occur in 2012. No further advocating is necessary 
for one to prove the urgent need for various scientific fields, 
including in silico oncology which is broadly considered 
among the cutting edge research directions of medical 
science, to contribute as soon as possible practical solutions to 
the most challenging health problem that has existed for 
apparently most of human history. 

In order for a tumor mass to grow beyond a specific 
critical size (1-2 mm in diameter), it must develop a blood 
supply network and that is the exact goal of angiogenesis. 
Indeed, tumor cells secrete tumor angiogenic factors such as 
vascular endothelial growth factor (VEGF) in response to 
hypoxia and, following a cascade of biological events 
triggered by the aforementioned factors, the tumor is 
eventually penetrated by vessels. Once angiogenesis has 
obtained its goal, new vessels provide the tumor mass with 
nutrients and oxygen, which are clearly of vital importance 
for its survival and for extra growth. Hence, the tumor may 
soon reach a population of 109 cancer cells [2] and eventually 
form metastases in distant organs. 

Due to the high complexity and the strongly multi-scale 
character of the tumor induced angiogenesis, mathematical 
modeling seems to be a valuable approach in qualitatively 
understanding the phenomenon and subsequently in 
supporting the treatment procedure. Even as early as the 70’s 
the research community had already attempted to model 
angiogenesis both in a physiological and a pathological 
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context mostly as a sole biological process [3][4] despite the 
fact that anti-angiogenic treatment had  already been proposed 
as a theoretical therapeutic approach [5]. However, with the 
appearance in the 90’s of actual experimental data suggesting 
that angiogenesis blockage could lead to tumor regression [6], 
the first completed mathematical models accounting for the 
interaction of tumor growth and tumor induced angiogenesis 
had already been introduced by the end of the decade [7][8]. 
During the first years of the new century and up to this point 
in time much progress has been done toward developing 
mathematical models which describe malignant tumor growth 
and take into account tumor induced angiogenesis explicitly 
[9-11] or even implicitly as perturbator of the proliferation 
related parameters that characterize the tumor (e.g. through 
the modification of the probability of a newborn cell to re-
enter the cell cycle in relation to its value in the largely 
necrotic layer of the tumor) [12][13]. 

In the aforementioned context, the structure of the paper is 
the following: In section II, a modeling approach describing 
vascular tumor growth under angiogenic signaling is outlined 
and briefly analyzed. In paragraph A the biological processes 
incorporated into the model as well as the underlying 
assumptions of the specific approach are stated, in paragraph 
B the modeling approach by Poleszczuk and his coworkers 
[1] that was used as a basis for our approach is introduced and 
in paragraph C the modification and extension of [1] by 
coupling it with another model simulating bevacizumab 
pharmacokinetics [14] is described. In section III, the 
implementation of the two coupled models is outlined and in 
section IV indicative results and respective comments are 
presented. Finally, the paper concludes with section V, where 
the main points of our work as well as suggestions and 
extensions are discussed. 

II. VASCULAR TUMOR GROWTH UNDER ANTI-ANGIOGENIC 

TREATMENT: A CONTINUUM APPROACH 

The model that was selected as a starting point to our 

approach was the one introduced by Poleszczuk et al. [1], a 

member of the wider family of approaches that were based on 
the scientific work of Hahnfeldt et al. [7]. 

A. Biological Mechanisms Addressed by the Model and 

Underlying Assumptions 

The continuum approach that is presented in paragraph B 
accounts for tumor cell proliferation, tumor cell apoptosis, 
postvascular dormancy (the state where angiogenesis 
stimulation and inhibition has come into balance), endothelial 
cell death, spontaneous loss of functional vasculature, 
excretion of endogenous proangiogenic factors such as 
vascular endothelial growth factor, fibroblast growth factors, 
etc., excretion of endogenous antiangiogenic factors e.g. 
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angiostatin, endostatin, etc., antiangiogenic treatment induced 
endothelial cell death and resulting tumor cell death. 

The underlying assumptions made in the context of the 
basic framework of the model are that the tumor is a three 
dimensional spheroid, that the diffusion process is in a quasi-
stationary state (i.e. that the tumor growth rate as well as the 
rate of change of drug concentration are relatively small 
compared to the rate of distribution of angiogenesis 
stimulators) and that the concentration of the 
stimulator/inhibitor is a radially symmetric function i.e., 

               ynxnyx           (1) 

where n(·) is the function that gives the concentration of the 
stimulator/inhibitor. 

B. Description of the Dynamical System in [1]  

The model makes use of a variable carrying capacity i.e. 
the maximum tumor volume that can be supported by the 
given vasculature, a concept originally introduced in [7]. The 
dynamical system described in [1] is consisted of a pair of 
ordinary differential equations which reflect the interplay 
between tumor volume (V) and carrying capacity (K).  

Equation (2) describes the rate of change of the tumor 
volume V. As it is also the case in [7], the authors have 
adopted Gompertzian growth equation:
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
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
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V
V
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dV
ln1           (2) 

Equation (3) describes the rate of change of the carrying 
capacity K: 
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
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The parameters and variables involved in (2) and (3) with 
their units are explained in table I. 

TABLE I.  PARAMETERS AND VARIABLES INVOLVED IN (2),(3) 

 Mathematical 

Symbol 

Units Description 

Independent 

variable 

t time time 

Dependent 

Variable 

V vol tumor volume 

Dependent 

Variable 

K vol tumor capacity 

Parameter λ1 1/time proportionality 

constant 

Parameter λ2 1/time proportionality 

constant 

Parameter c 1/(time ·  

vol
p 
) · conc 

proportionality 

constant 

Parameter d 1/(time  · 

vol
2/3

) 

proportionality 

constant 

Parameter α conc /vol
p
 constant 

Parameter β vol
p
 constant 

Parameter p ≥0 Hill coefficient 

Parameter I conc drug concentration 

in plasma 

In order to compute the exact forms of the 2nd and 3rd 
terms of (3) the authors applied a diffusion-consumption 

equation for the concentration of stimulators as well as for the 
concentration of inhibitors. 

C. Incorporation of Anti-angiogenic Treatment 

Pharmacokinetics: the Paradigm of Bevacizumab Mono-

therapy 

This paragraph describes the computation of 
antiangiogenic drug concentration I(t) in a given time-point t, 
a function that is involved in equation (3). We will proceed 
with the case of Bevacizumab which probably is the most 
popular representative of the wider family of antiangiogenic 
agents in clinical practice. 

The specific agent is a recombinant humanized 
monoclonal antibody that binds vascular endothelial growth 
factor (VEGF), the main mediator of tumor angiogenesis, 
thereby inhibiting the interaction of VEGF with its receptors 
(Flt-1 and KDR) on the surface of endothelial cells. 

Relevant literature strongly suggests that two – 
compartmental models assuming first-order elimination give 
the best description of bevacizumab pharmacokinetic data 
[15]. For the needs of reliable simulation of anti-angiogenic 
treatment we have studied and incorporated into [1] the two-
compartmental pharmacokinetic model proposed by Metzler 
and coworkers [14]. 

If T stands for the duration of infusion, the function that 
describes bevacizumab concentration in plasma is the 
following: 

While the infusion takes place, namely while Tt 0 : 

      (4) 

After the infusion, namely while tT  : 

 (5) 

The parameters and variables involved in (4) and (5) with 
their units are explained in table II. 

TABLE II.  PARAMETERS AND VARIABLES INVOLVED IN (4), (5) 

 Mathematical 

Symbol 

Units Description 

Independent 

variable 

t time time 

Dependent 

variable 

I conc  concentration of 

administered 

inhibitor in 

blood 

Parameter n - number of 

infusions 

Parameter T time duration of 

infusion 

Parameter Vc vol  volume of 

central 

compartment 

Parameter k12 1/ time inter-

compartmental 

rate constant 

(from central 

compartment  to 

   btat

ce

A eQeR
Vk

k
tI  


 1

          TtaTaTtbtb

ce

A eeReeQ
Vk

k
tI  


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outer 

compartment) 

Parameter k21 1/time inter-

compartmental  

rate constant 

(from outer 

compartment to 

central 

compartment  

Parameter ke 1/time elimination rate 

constant 

Parameter 

(Internal) 

dosage conc  dosage 

Parameter kA mass/time rate of infusion 

Parameter 

(Internal) 

w mass patient’s weight 

Parameter ti , i = 1,…,n time administration 

time-points of 

anti-angiogenic 

treatment 

* a, b, Q, R are computed based on inter-compartmental  rate constant values 

III. IMPLEMENTATION - NUMERICAL SOLUTION 

We proceeded with the implementation of the model in 
MATLAB. The m-files involved in the implementation of the 
model are listed and explained below. 

DrugConcentration.m:  This function implements the 
two-compartmental pharmacokinetic model [14] for 
administration via intravenous infusion (as it is the case for 
bevacizumab in clinical practice). It calculates the 
concentration of the antiangiogenic agent at each time point 
taking into account remnants of previous infusions, if any. 

VascularTumorGrowth.m:  This function computes the 
derivatives involved in (2), (3) which describe the vascular 
tumor growth. 

VascularTumorGrowth_main.m: Given initial values (V0, 
K0) and a time interval, the specific script file resolves the 
problem with the solver ode45, which implements a Runge 
Kutta method with a variable time step for efficient 
computation. It also plots the variables V and K (representing 
tumor volume and tumor capacity respectively) as functions 
of time in the same system of axes as well as the phase – 
plane of the system. 

It is noted that the experiments of free growth and 
intermittent treatment were performed on a desktop computer 
with an AMD Phenom(tm) II X6 1055T Processor 2.80 GHz, 
8.00GB RAM and with the 64 – bit version of Windows 7 
and that the code execution time is of the order of a few 
seconds. 

IV. INDICATIVE RESULTS  

Multiple code executions have been conducted testing the 
code with different parameter values, time span, initial values 
and code module (free growth, constant treatment, 
intermittent treatment). Below, two indicative results are 
presented by adopting the classical graph representation. 

A. Free Growth 

In this execution, the results of which are exhibited in Fig. 
1, λ1 was set as equal to 0.003465 1/day in order to reflect a 
typical value of human breast cancer doubling time i.e. 200 
days and the initial values as equal to (V0, K0) = (200 mm3, 
4000 mm3). A plateau of the tumor volume is obtained 

approximately after 3000 days, the value of which is 
determined by the point where endogenous angiogenesis 
stimulators and inhibitors come into balance. The tumor is 
characterized by the parameter values that are listed in table 
III. 

 

Figure 1.  Simulation results for an untreated breast  tumor characterized by 
the parameter values shown in table III 

B. Intermittent Treatment 

Fig. 2 presents the time course of volume V and carrying 

capacity K for a tumor treated with bevacizumab according to 

a real-life treatment scheme applied in clinical practice [15]. 

The tumor and the administered treatment are characterized 

by the parameter values shown in table III. Treatment begins 

the 300th day when the tumor size is already equal to 8000 

mm3 i.e. when the radius of the tumor is equal to 20 mm. 

Before the 300th day an initial overshoot of tumor volume (V) 

is observed due to the fact that the tumor is untreated. With 

the start of the regimen administration a sharp decrease of 

tumor capacity is obvious and then the response of tumor 

volume follows. This makes sense as anti-angiogenic 

treatment influences directly the vascular compartment and 

through it, the tumor compartment responses. Another 

interesting observation is that each time the curve K(t) 

intersects curve V(t), the monotonicity of the function V(t) 

changes. This observation is reasonable if one keeps in mind 

that tumor capacity is actually defined as the maximal tumor 

volume sustainable by the current vasculature. 

 
Figure 2.  Simulation results for a tumor treated with bevacizumab 

according to a scheme used in clinical practice [15] and characterized by the 
parameter values shown in table III 
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TABLE III.  PARAMETER VALUES USED IN EXHIBITED CODE EXECUTIONS 

Code Executions 

 A B Units 

n n/a 9 - 

T n/a 1/16 days 

ti , i = 1,…,n n/a 

t1=300, 

t2=321, 

… 

t9=468 

days 

Vc n/a 2390 ml 

k12 n/a 

 

0.223 

 

1/day 

k21 n/a 

 

0.215 

 

1/day 

 

ke 

 

n/a 

 

0.0779 

 

1/day 

dosage n/a 15 mg/ml 

ka n/a calculated internally mg/day 

w n/a 50 kg 

λ1 0.003465 0.013 1/day 

λ2 0 0 1/day 

c 5.85 5.85 mg/(ml·day ·  mm
3p 

) 

d 0.00873 0.00873 1/(day  · mm
2
) 

α 1 1 mg /(mm
3p 

   · ml) 

β 1 15 mm
3p

 

p 0 0 - 

V. CONCLUSION 

The main objective of this paper is to briefly present a 

mathematical model not only describing the interplay 

between tumor induced angiogenesis and solid tumor growth 

but also simulating the therapeutic effect of a real-life 

intermittent bevacizumab mono-therapy schedule. The model 

is currently being clinically and experimentally adapted and 

validated. A thorough sensitivity analysis is in progress in 

order to address the uncertainty of the model parameters. 

Multiple code executions have already been conducted  

testing the code with various parameter values, simulation 

time span, initial values and code modules. A meaningful way 

to extend this work would be to proceed to modifications so 

as to come up with a model simulating combination treatment 
consisted of both cytotoxic and anti-angiogenic agents. 
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 

Abstract— Prostate tumor (PT) normally has an indolent 

course during the first 10 to 15 years. Tumor progression and 

its clinical management, in the elderly patients, is therefore 

becoming  a social problem, and the feasibility of non-

therapeutic approaches, such as the Wait & Watch (W&W) 

one, requires a better understanding of the tumor natural 

history. Our model aims at connecting physical, biological and 

statistical knowledge in order to validate  empirical  views and 

to propose to clinicians a simple and effective ‘therapy-

simulator’, based on  a large experimental sample, helping 

them in the difficult goal of personalizing patients’ therapy. 

I. INTRODUCTION 

Prostate tumor  (PT) normally develops  slowly during 

the first 10 to 15 years and is often diagnosed late in life. Its 

clinical management, particularly in the elderly patients, is 

progressively becoming  a social problem, and the choice of 

the best therapeutic approach, included  the Wait & Watch 

(W&W) , requires a better understanding of the tumor 

natural history [1, 2]. 

Modeling approaches to prostate tumor growth proposed 

in the last decades were predominantly either rigorous, 

mathematically based and relying on meaningful biological 

parameters (but often not very realistic…) ones or, more 

recently, epidemiological and  statistical models, which take 

profit from the huge amount of data now available for their 

validation but are often more empirical and not solidly based 

on physical and biological reasoning.  A remarkable 

example of interconnection between the two views is given 

by Dimonte’s paper [3],  (see also its comprehensive 

bibliography for the above references).   

One of the key points  characterizing a model, and its 

ability to be applied in clinical settings, is the choice of its 

parameters. To make validation easier, prostate tumor 

progression can be  parametrized by means of the ‘TNM’ 

clinical staging, as an indirect evaluation of the actual tumor 

volume.  

Growth rate and tissue carrying-capacity will be related to 

other two sensible and clinically relevant parameters, i.e. the 

Prostate-Specific Antigen (PSA) and  the Gleason score 

(GS).  
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PSA plays a crucial role in the early detection of the PT [4] 

and in the monitoring of therapeutic failures [5]. However, it 

is sometimes a confounding parameter because of its poor 

specificity, being PSA currently produced  by the prostate 

and increased also in many non-cancerous diseases like 

prostate hyperplasia or inflammation and even recent 

mechanical stimulation. We therefore, differently from 

Dimonte’s paper [3], will account for PSA (and GS) not as a 

given ‘input’ parameter but as a factor which modulates the 

possible scenarios of PT evolution.  

We propose an approach which assumes a ‘non-stocastic’ 

growth law, which is very flexible and able to incorporate 

the tumor growth ‘spurts’ related to the well known invasive 

and metastatic development by accordingly ‘remodulating’ 

the values of the parameters. Such remodulation is 

performed by combining a ‘deterministic’ model of the 

natural history of the tumor with a statistical description, 

which mirrors the actual individual variability in tumor 

growth, and can be validated by clinical data. 

In what follows we will describe: a) the mathematical 

model and the main parameters which characterize its 

description of tumor growth; b) some typical ‘scenarios’ for 

prostate tumor progression; c) the implementation of the 

therapies and the validation strategies. The aim is that of 

providing clinicians with a sort of ‘simulator’ helping 

optimization of the therapeutic approach with an 

‘intelligent’ use of previous clinical experiences. 

II. OUTLOOK OF THE MODEL  

We describe tumor growth using the recently 

proposed [6] Phenomenological Universalities (PUN) 

approach, already applied to a wide range of topics [7]. In 

order to describe the PUN methodology from an applicative 

point of view, let us start with the first order nonlinear 

growth differential equation  

 

,)(= yya
dt

dy
                                                (1)  (1) 

 where )(ty  represents the variable of interest (e.g. the 

tumor mass or dimension or the number of cells) and )( ya  

the (unknown) growth rate. To integrate Eq.(1),  it is 

necessary to make some assumption about the rate a  or, 

equivalently,  on its time derivative or acceleration b , e.g. 

assuming that b  is given by an expansion in a , i.e.  

Prostate tumor growth modeled by a statistically –modulated PUN 

scheme  
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We call UN the class generated by the solution of 

the coupled ordinary differential equations (ODE) (1) and 

(2), when in the latter only the first N  terms are 

considered. The functions )(ty  that one obtains for the first 

UN classes ( 0,1,2=N ) have a very wide range of 

applications. In fact: 

 

 

           A. for 0=N , i.e. U0, 0=b ; )(ty  represents a 

self-catalytic or exponential growth function. By integrating 

over the two ODEs, we obtain  

 

),(=)( 00 tayty exp                              (3) 

 

where 0)=(=0 taa is  the initial growth rate  Here and 

in the following we normalize the variable )(ty , so that 

1=(0)y . This function describes an unlimited growth, 

and is  obviously too simple and unrealistic for  tumors.  

 

 

 

 B. 

for 1=N , i.e. U1, ab =  and  

 

    .1)(/=)( 00 tayty  expexp              (4)  

 

Equation (4) represents the Gompertz law [8], which has 

been extensively used in all kinds of growth problems for 

almost two centuries, and especially to tumors [9]. The 

parameter   represents a factor which is related to the so 

called carrying capacity of the system , which may be 

defined as  ya ln/= 0 , where y  is the asymptotic 

value of )(ty .  

 

 

 C. for 2=N , i.e. U2, 
2= aab    and  

 

   ,)(1/1=)(
1/

00





 tayty expexp              (5)   (6) 

which yields a generalization of West's law [10]. 

 A more accurate description of the tumor growth process 

should, however, be taken into account for periods of 

discontinued growth, such as dormancies or sudden 

increases in growth rate, which are normally experienced. 

This can be achieved by superimposing on an overall U1 or 

U2 model one or more “mathematical spurts”, modeled as 

small additional corrections that are also to be described in 

the framework of a UN class.  

Provided that the overall growth curve can be fitted, up to a 

certain level of approximation, by Eq. (4), to restrict our 

treatment to the class U1 and limit the number of “free” 

parameters of the model only to  , since 0y  and 0a  may 

be directly evaluated from the first few data. 

We then add on Eq. (4) a  number M  (usually one 

or two) of “spurts”, each given by  
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Being my0  i the amplitude of the spurt at mtt = , and 

),,( ttG mm   i the Gauss cumulative function with average 

value mt  and standard deviation m , defined by  
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 A special case of the Gauss cumulative function is the 

Heaviside function  
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The corresponding PUN classes will be called 

( GMU 1 ) and ( HMU 1 ), respectively, with 

1,2,=M  being the number of spurts assumed.  

 

 

III.   SCENARIOS FOR PROSTATE CANCER 

Anatomically 5 distinct lobes are distinguishable in 

prostate gland: Anterior (A) Medium (M),  Posterior  

(P) that is reperable at rectal touch, Right Lateral  (RL) 

and  Left Lateral  (LL). [11] We can actually  envisage 

a Progression Scheme, where the prostate tumor grows 

initially within a glandular lobe surrounded by intact 

capsule.  According to Mc Neal [12] 4 zones are of 

interest: the transitional or periuretral zone where 

benign prostatic hypertrofia and 20% of tumors 

normally develops, the peripheral zone, where about 

70% of tumors origin, the central zone (25%) and the 

anterior zone (10%).  Tumors confined within a lobe  

are normally scored T1 or T2 (see Table 1).  
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TABLE I: DETAILS OF THE T CODES FROM TNM 

CLINICAL CLASSIFICATION FOR PROSTATE CANCER 

 

 

TNM Clinical Classification for PROSTATE 

CANCER 

 

TX. Primary tumor cannot be assessed 

T0. No evidence of primary tumor 

T1 
Clinically inapparent tumor not palpable or visible by 

imaging 

T1a 
Tumor incidental histological finding in 5% or less of tissue 

resected 

T1b 
Tumor incidental histological finding in more than 5% of 

tissue resected 

T1c 
Tumor identified by needle biopsy (e.g., because of elevated 

PSA) 

T2 Tumor confined within prostate 

T2a Tumor involves one half of one lobe or less 

T2b 
Tumor involves more than half of one lobe, but not both 

lobes 

T2c Tumor involves both lobes 

T3 Tumor extends through the prostatic capsule 

T3a Extracapsular extension (unilateral or bilateral) 

T3b Tumor invades seminal vesicle(s) 

T4 
Tumor is fixed or invades adjacent structures other than 

seminal vesicles: bladder neck, external sphincter, rectum, 

levator muscles, or pelvic wall 

 

T3 score defines the invasion of the full organ and T4 the 

loco-regional invasion.  Such events would obviously occur 

with a different timing depending, for instance, on their  

different geometrical positions inside the prostate . Provided 

it is centrally positioned, a longer time will be required to 

reach the boundary of the organ and to start invading the 

surrounding. The  statistical distribution of the times is 

therefore described by the ‘average time’ tmin Eq. (6,7)  for 

organ filling, while the two ‘tails’, described by m in Eq 

(6,7)  account for the cases in which the tumor seed is just 

near to ( or very far from) the boundary. Due to the rich 

vascular net of the prostate (both arterial, prostatic a. and  

intern pudenda, and venous (uretral plexus,  vescical-

prostatic bilateral pudend plexus,  hypogastric veins [11] as 

well as  the extended lymphatic drainage, tumor seeds can 

easily colonize the regional  lymphatic  nodes (score N1) or 

the distant nodes (score M1a), the bones (M1b) or other 

distant organs (M1c). The actual timing of near and distant 

invasions are again different for individuals, depending on 

factors which can be taken into account only statistically. 

Furthermore, the likelihood of spreading beyond confines of 

the prostate is strictly related to both GS and PSA : for 

instance according to Mayo Clinic Prostate Cancer Guide 

[13] 12% of low-grade tumors (GS: 2-4) spread beyond 

prostate in 10 years, 33% of medium-grade tumors (GS:5-6) 

spread beyond prostate in10 years and 61% of high-grade 

tumors (GS: 7-10) spread beyond prostate in 10 years. Also 

PSA dosage, which is considered normal if <  2,5 ng/mL 

before 50 yy and < 4 ng/mL in elderly patients, was shown 

to be lower then 10 ng/mL in confined TP, then 20 ng/mL in 

lymphonodal involvements and to be >20 ng/mL  in 

metastatical spread [ 14]. 

Note that during the follow-up after therapy  the normality 

limits are 0,2 ng/mL after radical prostatectomy and Nadir + 

2 ng/mL after radiotherapy. 

 Actually, some combination of pretreatment prognostic 

factors, such as clinical stage, PSA and GS, has been 

empirically related to the extraprostatic spread of PT with 

nomograms  such as the Roach and Memorial Formulas 

(widely used by Radiation Oncologists) or the Partin Table 

(widely used by surgeons) [15-19].  

Different scenarios should be therefore envisaged for 

different initial values of GS and PSA, by differentiating at 

least 3 x 4 = 12 different scenarios. 

As an example, a possible scenario pertaining to the case of 

low GS and low PSA will be described by Fig. 1 , where the 

average times and the Gaussian amplitudes are to be defined 

according to the available data. 

 

 

 

Figure 1: sketch of the expected tumor growth progression in a    low 

GS and PSA scenario. 

  

IV.   IMPLEMENTATION OF THERAPIES 

 

Tumor detection is normally followed by the choice of some 

single or multi-therapeutic strategy. 

In recent years, due to the fact that most T1-T2 cancers have 

an indolent course during the first 10 to 15 years and 

patients are often middle-aged, the so-called Watchful 

Waiting (W&W) approach is preferred.  

When stadiation and/or GS and PSA values suggest a more 

incisive intervention, various approaches are normally 

selected between  surgery (radical prostatectomy classic or 

robotic with/without lymphadenectomy), radiotherapy 

(brachytherapy / external radiotherapy with 

3D/IMRT/IGRT), hormons , chemotherapy or other 

therapies (criotherapy, HIFU etc.) only for recurrent disease 
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All the above therapies can be described by proper 

mathematical algorithms which accounts for timing, dosage, 

one or multi-shot (see for instance [20, 21]). 

An extension of the model presented in part I will be 

provided based on the data actually available. 

 

V.   VALIDATION STRATEGIES 

Data will be provided by three main ways: the first are the 

tumor epidemiological registers available in Turin city and  

Biella city of  Regione Piemonte , which report diagnosis, 

some epidemiological data of patients, treatments and the 

outcome ; the second are some clinical registers of 

Radiotherapy centers as the IRCC in Candiolo (TO), the 

Mauriziano Hospital in Turin  and the Radiotherapy center 

in Biella (BI) and the urology center in S. Giovanni Bosco 

Hospital  in Turin ; lastly the final way are data coming 

from National Institute Tumori in Milan where a W&W 

protocol for early prostate cancer is currently applied.  

The subgroups of patients who didn’t undergo any  therapy  

or followed the W&W strategy will be used  to validate the 

natural history of the prostate cancer. The other patients will 

be divided according to the mono (surgery or radiotherapy) 

or multi-therapies (surgery + radiotherapy or  hormons + 

radiotherapy) and their data will be used to validate the 

corresponding part of the model. 

 

VI. CONCLUSION 

 

First of all, the natural history of the PT will be investigated 

by comparing model scenarios and clinical data. Particular 

attention will be devoted to various ‘empirical’ formulas, 

such as the Roach, Partin and Memorial H. nomograms [16, 

18, 19], to be validated on the basis of the model.  In a 

second stage the impact of therapies on the PT progression 

will be evaluated.  

The ideal goal of such a model would be that of providing 

clinicians of an affordable but simple tool for producing 

some ‘simulation’ of the clinical expectations for any single 

patients making an ‘intelligent’ use of the previous available 

experiences. After model validation, a further prospective 

study in which the model best predictions will be compared 

with current clinical managed decisions, possible performed 

on a blind, multicenter  and randomized recruiting base, is 

envisaged. 

. 
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 

Abstract—The Continuous Mathematics Based Glioblastoma 

Oncosimulator is a platform for simulating, investigating, 

better understanding, and exploring the natural phenomenon 

of glioma tumor growth. Modelling of the diffusive-invasive 

behaviour of glioma tumour growth may have considerable 

therapeutic implications. A crucial component of the 

corresponding computational problem is the numerical 

treatment of the adiabatic Neumann boundary conditions 

imposed by the skull on the diffusive growth of gliomas and in 

particular glioblastoma multiforme (GBM). In order to 

become clinically acceptable such a numerical handling should 

ensure that no potentially life-threatening glioma cells 

disappear artificially due to oversimplifying assumptions 

applied to the simulated region boundaries. However, no 

explicit numerical treatment of the 3D boundary conditions 

under consideration has appeared in the literature to the best 

of the authors’ knowledge. Therefore, this paper aims at 

providing an outline of a novel, explicit and thorough 

numerical solution to this problem. Additionally, a brief 

exposition of the numerical solution process for a homogeneous 

approximation of glioma diffusion-invasion using the Crank – 

Nicolson technique in conjunction with the Conjugate 

Gradient system solver is outlined. The entire mathematical 

and numerical treatment is also in principle applicable to 

mathematically similar physical, chemical and biological 

diffusion based spatiotemporal phenomena which take place in 

other domains for example embryonic growth and general 

tissue growth and tissue differentiation. A comparison of the 

numerical solution for the special case of pure diffusion in the 

absence of boundary conditions with its analytical counterpart 

has been made. In silico experimentation with various 

adiabatic boundary geometries and non zero net tumour 

growth rate support the validity of the corresponding 

mathematical treatment. Through numerical experimentation 

on a set of real brain imaging data, a simulated tumour has 

shown to satisfy the expected macroscopic behaviour of 

glioblastoma multiforme, on concrete published clinical 
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imaging data, including the adiabatic behaviour of the skull. 
The paper concludes with a number of remarks pertaining to 

the potential and the limitations of the diffusion-reaction 

approach to modelling multiscale malignant tumour dynamics. 

I. INTRODUCTION 

The Oncosimulator is a concept of integrative cancer 

biology, a complex algorithmic construct, a biomedical 

engineering system, and eventually in the future a clinical 

tool that primarily aims at supporting the clinician in the 

process of optimizing cancer treatment in the patient – 

individualized context through conducting experiments in 

silico i.e. on the computer. Additionally, it is a platform for 

simulating, investigating, better understanding, and 

exploring the natural phenomenon of cancer, supporting the 

design and interpretation of clinicogenomic trials and finally 

training doctors, researchers, and interested patients alike 

[1]. 

Glioblastoma multiforme (GBM) is a very aggressive 

glioma and a classical example of a highly invasive and 

diffusive tumour. GBM cell diffusion in the brain is a 

reasonable first approximation of the migration of glioma 

cells along structures such as the basement membranes of 

blood vessels or the glial limitans externa that contain 

extracellular matrix (ECM) proteins. Frequentlty, invasive 

glioma cells are also found to migrate along myelinated fiber 

tracts of white matter. Despite improvements in cancer 

treatment, its overall prognosis is still very poor. Due to its 

markedly diffusive character, a significant component of the 

tumour cannot be delineated based on standard tomographic 

imaging techniques such as CT, MRI and PET. Glioma cells 

are found in tissues surrounding the tumor, even after total 

resection of the tumor parts detectable by MRI 

scanning.This constitutes an important limitation to the 

optimal design of both surgical excision and therapeutic 

irradiation of the tumour. In order to partly alleviate the 

problem, mathematical modelling of diffusive tumour 

growth has been proposed. To this end a number of 

diffusion-reaction based models dealing primarily with the 

morphology of tumour growth have been developed [2 – 4]. 

In accordance with the diffusion-reaction based 

approach, the tumour is considered a spatiotemporal 

distribution of continuous cell density which follows the 

general diffusion-reaction law. Tumour growth can be 

expressed by the following statement [2,3]: 
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Rate of change of tumour cell population= diffusion 

(motility) of tumour cells + net proliferation of tumour cells 

- loss of tumour cells due to treatment 

The macroscopic formulation of diffusion, leads to a 

partial parabolic differential equation. A single tumour cell 

may constitute the initial tumour within a three-dimensional 

medium. In the case of glioma, the simulated region of 

interest may include part of the skull which acts as an 

adiabatic boundary for the diffusion of the brain tumour, 

precluding migration beyond it. Subsequently, the 

simulation of tumor growth and invasion can be viewed as a 

boundary value problem strongly dependent on the values 

assigned on the physical boundary of the definition domain. 

As a result, the mathematical treatment of the biophysical 

processes taking place in the vicinity of anatomic boundaries 

must satisfy specific constraints. Zero flux boundary 

conditions have to be applied on the anatomic boundaries of 

the skull surface. Thus if  is the brain domain on which 

the diffusion equation is to be solved the previous statement 

can be symbolically formulated through the following 

differential equation [2]: 
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The variable c denotes the cell concentration at any 

spatial point defined by the position vector x  and time t.  

The parameter D denotes the diffusion coefficient and 

represents the active motility of tumour cells. The term ρ 

represents the net rate of tumour growth including 

proliferation, loss and death, n̂ is the unit vector normal to 

the boundary ∂ of the domain  and x)(f is a known 

function that defines the initial spatial distribution of 

malignant cells. The term G(t) accounts for the temporal 

profile of treatment and as a first facilitating approximation  

G(t)=k may be assumed constant. The latter may crudely 

model a continuous administration of radiation e.g. through 

special radioisotope based implants. A more realistic 

assumption is to assign  G(t) different values for different 

time intervals reflecting various chemotherapeutic and/or 

radiotherapeutic schedules. The simulation domain R of 

which  is a subdomain is defined as:      

 R={(x, y, z)| a<x<b, s<y<d, e<z<f} 

II. EXPLICIT NUMERICAL FORMULATION OF THE BOUNDARY 

CONDITIONS 

The first step in the problem approximation process is to 

make spatial and time discretization introducing a 

computational grid that is applied on the anatomic region of 

interest. Having defined  the computational grid, the 

diffusion component of the problem is numerically solved 

using the Crank Nicolson numerical method in conjunction 

with the Conjugate Gradient method. The Crank-Nicolson 

method is second-order accurate in both time and space and 

unconditionally stable. The non - stationary iterative 

Conjugate Gradient method (CG) is widely used for the 

solution of linear sparse systems. In a spatiotemporal model 

of tumor growth, any anatomic boundaries of the space 

where tumor can grow are very important for the outcome of 

the simulation. In order to complete the model formulation 

for clinical glioblastoma growth homogeneous Neumann 

boundary conditions have to be added. 

The glioma invasion problem involves an irregularly 

shaped domain. Therefore, a biologically meaningful 

solution has to allow for the investigation of a wide range of 

elementary local domain geometries.  Several specific cases 

have been examined in order to address the geometry of the 

irregularly shaped skull boundary. For each boundary mesh 

node (lying at the center of the multi-colored structure of 

Fig.1 (and therefore not visible) all its 6 adjacent nodes 

(lying towards all the x+, x–, y+, y–, z+, z– directions) are 

considered in order to numerically apply the boundary 

condition on it i.e. on (xi, yj, zk)   [5].  

The boundary condition according to (1) is:  

 Ω0ˆ  oncDn  

In order to evaluate the boundary condition for each grid 

point (xi, yj, zk) and maintain the block tridiagonal structure 

of the coefficient matrix A


of the resulting linear system of 

algebraic equations bA


x  and the second-order accuracy 

of the approximation we introduce a “fictitious node” into 

the computational grid. The “fictitious node” produces an 

extra row of unknowns in the computational grid. 

Evaluating the boundary condition at each boundary grid 

point (xi, yj, zk)  yields six equations mathematically similar 

(but not identical) to the equation corresponding to the 

following case: 

At the boundary grid point (xi, yj, zk)  in the negative x 

direction x–: 


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where Fi,j,k denotes a fictitious node. 

The total number of the different cases of nodes having 

boundary node(s) as their neighbour(s) that have been 

considered is 26. This has led to the formulation of 26 

algebraic equations mathematically similar (but not 

identical) to (5). An appropriate equation out of the set of 

these 26 equations is used for any index triplet (i, j, k) 

belonging to the boundary. By fixing indices i, j, k to 

specific values, the 26 equations can produce all elementary 

boundary arrangements encountered in the case of an 

arbitrarily shaped boundary.  

An indicative case and equation is the following: 

At the boundary grid point (xi, yj, zk) where the skull lies 

only in the positive x direction: 
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where λ=DΔt / [2(h)2] for h=Δx=Δy=Δz, tn=nΔt, and 

n=0,1,2…  

 

 

 

 

 

                

 

 

 

 

 

  



Figure 1.  A boundary mesh node (lying at the center of the multi-colored 

structure and therefore not visible) with its 6 adjacent nodes.  

III. NUMERICAL EXPERIMENTS 

In order to test the numerical schemes implemented for 

solving (1) and support the correctness of the overall 

mathematical treatment presented, a number of pertinent 

computational scenarios have been executed. They have 

included inter alia: numerical checks regarding convergence 

and stability of the algorithm and the code, checks regarding 

mass conservation and linearity for the theoretical case of 

pure diffusion, comparison of the model with the analytical 

solution to the special case of an initial Gaussian cell 

concentration profile, spatial symmetry studies for simple 

symmetric geometries and numerical validation of the 

adiabatic behaviour of the boundary implementation. 

IV. CLINICAL VALIDATION ASPECTS 

For the clinical validation of the model, a real human 

head has been considered. The three dimensional image 

depicted in panel A of Fig. 2 has been constructed using a 

freely available T1 weighted MRI head dataset (J. Orchard,  

http://www.cs.uwaterloo.ca/~jorchard/mri/). 

Several snapshots of a growing virtual glioblastoma 

tumour corresponding to various time points are depicted in 

Fig. 3. It is noted that although the internal anatomy of 

brain is visible in the panels of this figure, homogeneous 

diffusion of tumour cells has been assumed within the skull 

cavity as a first approximation. The concentration of tumour 

cells within the initial simulated tumour has been arbitrarily 

assumed uniform and equal to 106 cells per cubic millimeter. 

The following parameter values have been used: diffusion 

coefficient D=0.0065 cm2/d, [2], h=0.2cm, Δt=0.5d , and net 

tumour growth rate ρ=0.012 units per day [2].  It should be 

noted that the gross spatial pattern of glioblastoma growth, 

especially in the vicinity of the skull boundary, is in very 

good agreement with actual published clinical observations 

[6-7]. The change of the total number of tumor cells inside 

the mesh is depicted in Fig. 4. 

The diameter of a sphere with volume equal to a 

glioblastoma tumour of fatal imageable dimensions is about 

6cm [2]. The latter corresponds to a volume Vfatal of 

113.04cm3. In order for the tumour to increase in imageable 

volume from Vfatal/2 to Vfatal, 26 days are needed according 

to 

the simulations. This approximation to doubling time is in 

good  agreement  with  the  clinically  reported  

glioblastoma 

 

 

 

 

 

 

 

 

 

 

Figure 2.   (A) A three dimensional rendering of a set of T1 weighted  

MRI slices of a real human head. (B) An initial fictitious virtual spherical 

glioblastoma tumor of radius equal to 1.4 cm (denoted by white color) lying 

inside the skull cavity.  (C) Reconstruction of the brain cavity of the skull 

following segmentation of each MRI slice. 

 

 

 

 

 

 

 

 

Figure 3.  Schematic representation of the growth of a virtual 

glioblastoma tumor in vivo in sagittal planes at various time points ( panel 

columns from left to right correspond to days 1, 30, 90 and 160 respectively). 

(A) The red color intensity level I depends on cell concentration according to 

the function I=klog10c , where c denotes tumor cell concentration,  the constant 

k=255/log10cmax , cmax is the maximum value of tumor cell concentration over 

the entire space and time range considered during all simulations that have 

been included in this figure. Maximum and zero cell concentration corresponds 

to RGB(255,0,0) and RGB(0,0,0) respectively. (B), (C) As time increases, the 

tumor diffuses theoretically over the interior space of the skull cavity of the 

human head.  (D) The yellow/bright contour defines the boundary of the tumor 

component in 2D that is tomographically detectable and has a cell density 

higher than the assumed threshold of 8000 cells per cubic millimeter. 

doubling time in [8]. It is noted that in order to avoid a 

somewhat artificial diffusion behaviour during the first 

http://www.cs.uwaterloo.ca/~jorchard/mri/
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simulated days which would be dictated by the deliberately 

assumed abrupt boundaries of the initial tumour, the first 14 

simulated days have not been taken into account in the 

theoretical estimation of doubling time.  

Fig. 5 depicts the relative percentage error of the total 

number of tumor cells calculated by comparing  the 

predicted values generated by the model with the ones 

obtained by the application of the exponential growth. The 

exponential growth is the simplest proliferation law. The 

first reported work on an exponentially growing population 

was performed by Reverend T.R. Malthus in 1798. 

A typical execution instance of the code for 6 simulated 

months,  Δt=0.5d and for descritized mesh 130x130x130, on 

a 32-bit Windows Vista Platform, 4 GB RAM and processor 

Intel® Core™2 Duo CPU P8600 @ 2.4GHz, takes 214 sec. 

Further acceleration of the code execution could be achieved 

by using high performance computing resources. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Total number of tumor cells for the virtual tumor 

 

 

V. CONCLUSION 

An explicit numerical treatment of the boundary 

conditions to be used in conjunction with a homogeneous 

diffusion-reaction based glioma growth model has been 

presented. 

 Systematic checking of the corresponding computer code  

based on numerical simulations for various adiabatic 

boundary geometries, zero and nonzero net tumour growth 

rate and zero and nonzero loss rate due to treatment have 

supported the validity of the corresponding mathematical 

treatment. Numerical experimentation on a set of real brain 

imaging data has demonstrated that a simulated 

glioblastoma tumour can satisfy the expected macroscopic 

behaviour of its real counterpart, including the adiabatic 

behaviour of the skull.  The detailed treatment of the 

boundary conditions presented could considerably contribute 

to the accuracy of the solution to the diffusion-reaction 

equation in particular for glioblastoma tumours having their 

main bulk close to the skull. The composite model proposed 

appears to have the potential to correctly predict clinically 

meaningful and measurable quantities of critical importance 

related to the course of the disease, such as the imaging 

based doubling time. Obviously a strict clinical adaptation 

and validation procedure is a sine qua non requirement 

before clinical translation is envisaged. Additionally, 

translation or extension of the analysis presented to 

mathematically similar physical systems is a possibility. 

Extension to both inhomogeneous and anisotropic glioma 

diffusion is pretty straightforward. It should be noted, 

however, that although the continuous - finitized approach 

partly delineated in this paper appears to be a good choice 

for pure tumour growth-invasion-diffusion modelling, it 

seems not to be ideal for the integration of the massive 

multiscale biological complexity that is necessary in order to 

study in depth tumour response to treatment.  

Discrete entity – discrete event based approaches [9-12] 

on the contrary have demonstrated considerable integrative 

potential in the context of cancer response to treatment due 

to the discrete character of many biological entities and 

features involved in this domain ( e.g. discrete cell 

categories based on their mitotic potential such as stem cells, 

progenitor cells, differentiated cells; discrete cell cycle 

phases generally characterized by differing treatment 

sensitivities; discrete character of cell state transitions  etc.). 

Nevertheless, both continuous/finitized and discrete 

approaches are important for the development [11] and the 

clinical translation [13] of the emerging oncosimulators 

[11]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.   Plot of the relative percentage error of the total number of tumor 

cells for the initial tumor of Fig. 2. 
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 

Abstract— Glioblastoma is the most aggressive type of 

glioma. During the last decades, several models have been 

proposed for simulating the growth procedure of glioma. One 

of the latest proposed models builds upon the proliferation – 

diffusion model by incorporating the angiogenic net rates 

and different concentration of cell populations (normoxic, 

hypoxic and necrotic). This proliferation- invasion- hypoxia- 

necrosis- angiogenesis model (PIHNA) does not take into 

account radiotherapy. This work presents the mathematical 

foundation for solving PIHNA model in two dimensions with 

incorporated radiotherapy effect using the Linear Quadratic 

Model, which uses radiobiology parameters.  

I. INTRODUCTION 

LIOMA, especially glioblastoma, is the most fatal 

brain cancer, despite the major advances in medicine 

[1-3]. The highly invasive and neoplastic growth of 

glioma has emerged the necessity to describe the 

mechanism of glioma growth, using mathematical models.  

The major macroscopic models either use the diffusion 

reaction equation for simulating the change of tumor cell 

concentration (diffusive models) [4-9] or cellular automata 

for simulating invasion and proliferation by using 

deterministic cell state change rules [10-11].  
This paper deals with an extended type of diffusive 

models for three types of cell populations and simulates 

radiotherapy by adding a consuming term from the Linear 

Quadratic Model in the respective equations. 

II. BACKGROUND 

Diffusive models [4] simulate the change of glioma 

concentration in time and in space, by using two main 

terms for invasion (diffusion term) and proliferation 
(reaction term) of glioma cells. The equation used in 

diffusive models is the following: 

  

  
   (   )    (  

 

 
) 

 (1) 

where c(x,t) is the is the tumor concentration in position x 

at time t,   is the diffusion coefficient (can be spatially 

varying),   and    are the gradient and divergence 

operators respectively,   is the net cell proliferation rate 

and   is the maximum tumor cell concentration. This 

model assumes that cancerous cells proliferate at a 

 
* This work was supported in part by the community initiative 

Program INTERREG III, Project “YΠEPΘEN”, financed by the 

European Commission through the European Regional Development 

Fund and by National Funds of Greece and Cyprus and the EC project 

TUMOR (FP7-ICT-2009.5.4-247754) 

A. Roniotis, V. Sakkalis, E. Tzamali, G. Tzedakisand K. Marias are 

with the Institute of Computer Science, FORTH, Vassilika Vouton, GR-

70013 Heraklion, Crete, Greece ({roniotis; sakkalis; tzamali; gtzedaki; 

kmarias}@ics.forth.gr). Greece (Phone: +30 2810 391672 Fax: +30 2810 

391428)A. Roniotis and M. Zervakis are with the Dept of Electronic & 

Computer Engineering, Technical University of Crete, 73100, Chania, 

Greece (michalis@display.tuc.gr). 

constant rate which is independent of nutrients availability 

and the cell population has the same type. 

In order to incorporate nutrient availability and 

oxygenation, the model of (1) can be altered to the 
proliferation- invasion- hypoxia- necrosis- angiogenesis 

(PIHNA) model [12-13]. This model includes three 

different types of cell population, normoxic, hypoxic and 

necrotic, while vasculature and angiogenic factors (e.g. 

VEGF) have also been incorporated into the model. 

The emerging system of equations for these three types 

of cells, endothelial cells (vasculature) and angiogenic 

factors are: 
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where     (     ),   (       )  . In 

first equation  (   ) is the concentration of normoxic cells 

at position x at time t. The cells diffuse at a rate  , 

proliferate at a rate ρ, turn to hypoxic at a rate   or turn 

directly to necrotic (due to contact death) at a rate   .  

Similarly,  (   ) is the concentration of hypoxic cells, 

which diffuse at a rate  , turn back to normoxic at a rate   

or turn to necrotic at a rate   .  

Continuing,  (   ) is the concentration of necrotic 

cells, while  (   ) and  (   ) are the vasculature 

(endothelial cells linked to oxygenation) and concentration 

of angiogenic factors, respectively. Vasculature disperses 

at a rate   , increases at a rate     
 

    
 and turns to 

necrotic cells at rate   .  

Lastly, angiogenic factors are produced by normoxic 

cells at rate    and by hypoxic cells at rate   , decay at a 

rate   and are washed out by vessels at rate  . In the last 

two equations,   is the proliferation rate of endothelial 

cells,    is the Michaelis – Menten constant of response 

of endothelial cells to angiogenic factors and   is the 

consumption of angiogenic factors per endothelial cell 

proliferation. 
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In order to incorporate radiotherapy into the PIHNA 

model, the Linear Quadratic Model (LQ) could be used 

[14-17]. According to LQ model, the probability of cells 

surviving   following a single dose of radiation  (   ) 
was observed to follow the relationship: 

 ( )     (       )                          (3) 

where linear   and quadratic   are the radiobiology 

parameters, which are interpreted biologically as 

repairable single and lethal double-strand breaks to the 

cell’s DNA, respectively [15]. In general, cancers with 

high motility, like glioblastoma, show a high tissue 

response        [16]. Especially for photon radiation 

therapy, which is most commonly applied, the hypoxic 

cells are as much as 2 to 3 times more resistant to radiation 

damage than normoxic [18]. Thus, Oxygen Enhancement 

Ratio (   ) has to be included in the model [19]. 

III. METHODS 

 This paper investigates the incorporation of 

radiotherapy effect in the PIHNA model. Radiotherapy 

could be interpreted as an additional term for turning 

normoxic cells and hypoxic cells to necrotic cells in the 

first two equations of (2). Given the radiotherapy dose, the 

effectiveness of irradiation on hypoxic cells, compared to 

normoxic cells, is lower and this is expressed through 

   . Thus, if we assume that all normoxic cells are 

affected by irradiation and     is the Oxygen 

Enhancement Ratio, then the first three equations of (2) 

can be altered to the PIHNA-LQ model as following: 
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Fig.1. illustrates the interactions between the elements 

of the PIHNA-LQ model for simulating proliferation, 

invasion, hypoxia, necrosis, angiogenesis and 

radiotherapy. The interactions have been extracted from 

equations (2), (4), (5). The diagram has been designed on 

the diagram of Figure 1 of [13], by adding the 

radiotherapy terms of the LQ model. 

IV. MODEL IMPLEMENTATION 

We have implemented the PIHNA-LQ model in 

MathWorks™ Matlab (version 7.1). As there is no direct 

algebraic solution to the equation system of (4), we 

estimated the solution numerically. More specifically, we 

approximated the spatiotemporal solution of the system of 

the five partial differential equations by developing 

numerical schemes of Finite Differences in two spatial 

dimensions.  

In order to avoid instability issues, the implicit 

numerical method of Crank Nikolson was used for 

building the Finite Differences for a variable in an 

equation where this variable was subject to temporal 

change.  

On the other hand, in order to simplify the procedure of 

solving, an explicit method (Forward Euler) was used for 

approximating the rest variables for the model. This means 

 
Figure 1. Modified Figure from [13]: Outline of the PIHNA-LQ mathematical interactions for the PIHNA model, by adding the 

radiotherapy terms extracted from the LQ model [16]. The interactions interfere normoxic cells, hypoxic cells, necrotic cells , endothelial 

cells (vasculature) and angiogenic factors (e.g. VEGF). 
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that e.g. for the first equation that simulates the temporal 

change of  , the implementation uses Crank Nikolson for 

approximating   and its derivatives, grad and div, while it 

uses Forward Euler in order to approximate       and  . 

This holds similarly for the rest four equations of the non 

linear system. 

V. RESULTS 

We have applied the PIHNA-LQ model for two cases. 

In the first case, the tumor is left to grow without 

treatment for 30 days, while in the second case 

radiotherapy is applied after 20 days of free growth for 10 

more days. Table I depicts the parameters used in the 

model. The parameters used in the model were extracted 

from [12]. 

Before feeding the model with parameters, they were 

nondimensionalized according the formulas shown in the 

same table. The spatial nondimensionalization was built 

on a grid spanning an overall area of     for       

and the temporal nondimensionalization was built on a 

time step of     . Thus, the new positions  ̂ are found 

according to  ̂  
 

 
 and the time is changed to  ̂  

 

 
. 

Lastly, the concentration       and   of normoxic, 

hypoxic, necrotic and endothelial cells, respectively, is 

nondimensionalized according to the capacity of cells 

     
     

   
, thus  ̂  

 

 
  ̂  

 

 
  ̂  

 

 
 and  ̂  

 

 
. 

Similarly, the maximum value of angiogenesis is altered 

according to the formula  ̂  
 

    
, where      

         
    

   
. 

For simulating radiotherapy, we set the LQ parameters 

as       ,           ,        and      . 

For both simulation cases, the initial states for all five cell 

populations was set at: 

 ̂(   )           (    )
 
 

 ̂(   )    

 ̂(   )                     

 (6) 

 ̂(   )       

 ̂(   )    

Row (a) of Fig. 2 presents the spatial concentration of 

normoxic, hypoxic and necrotic cells after 30 fictitious 

days of free glioma growth simulation. The computed 

graphs are depicted on a 40x40 grid (where       and 

   (     )). The row (b) depicts the respective graphs 

for the second case on the 30th day, assuming that 

radiotherapy treatment was applied for 10 days after 20 

days of free growth (by applying the parameters of the 

previous section). 

The results of our simulations computed that the peak 

value of the population of normoxic, hypoxic and necrotic 

cells is 0.7654, 0.2041 and 0.0139 in the case of free 

growth (PIHNA), while in the case of applying irradiation 

(PIHNA-LQ) these are 0.7614, 0.2906 and 0.8035 

respectively. Moreover, the total viable cells (   ) on 

the 30th day decrease to 4.13  after therapy, compared to 

5.23  for the case of free growth. Respectively, the total 

necrotic population ( ) increases during radiotherapy, as 

expected.  

These results indicate that the numerical framework 

presented can model the effect of radiotherapy by 

incorporating the LQ model into the PIHNA model. 

PIHNA-LQ model needs to be validated in a quantitative 

fashion against actual clinical data before and after 

radiotherapy treatment is applied to specific patients. We 

are currently in the final stage of glioma dataset collection. 

VI. CONCLUSION 

In this paper we presented an initial qualitative 

evaluation of a diffusion-reaction glioma growth model 

with normoxic, hypoxic and necrotic cells, incorporating 

vasculature, angiogenesis and radiotherapy treatment 

effect. We applied the Linear Quadratic model on the 

PIHNA model in two spatial dimensions.  

The first results indicate that the radiotherapy can be 

simulated by this model.This is an important observation 
that needs further validation both from the experimental 

and the biological interpretation sides. Moreover, lysis of 

necrotic cells could be studied in future work by 

incorporating a subtraction term in the equation for 

necrotic cells. 

TABLE I – THE PARAMETERS FOR PIHNA-LQ MODEL SIMULATION AND THEIR NONDIMENSIONALIZED VERSIONS 

Parameter Value Nondimensionalized Parameter Value Nondimensionalized 
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Fig. 2.The distribution of concentration for the three different populations of glioma cells (normoxic, hypoxic and necrotic cells) 

after applying the PIHNA model (a) and the PIHNA-LQ model (b).  The graphs are extracted on the 30
th

 day of simulation. 
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 

Abstract— Two blastemal nephroblastoma cases have been 

successfully clinically adapted under two simulation scenarios of 

a clinically-oriented multiscale computational model, providing 

insight into the tumor characteristics. 

 

I. INTRODUCTION 

In the last years many computational models have been 
produced [1-3] in order to simulate the hypercomplex 
phenomenon of cancer.  A predominately discrete, clinical 
trial-driven, 4D simulation model of Wilms’ tumor, 
simulating free growth and response to preoperative 
chemotherapy has been developed by the In Silico Oncology 
Group-National Technical University of Athens (ISOG-
NTUA) [4-5]. The simulation approach is “top-down” 
integrating multiple levels of biological complexity. A level 
of confidence of the model has been already set [5]. In the 
framework of further adaptation and validation of the model, 
two unilateral nephroblastoma cases treated with preoperative 
chemotherapy are simulated under two virtual scenarios.  
Successful adaptation has been achieved and valuable hints 
concerning tumor characteristics are revealed. 

 

II. IN SILICO MODEL DESCRIPTION 

A. Modeling tumor initialization and advancement 

The model structure and algorithm has been analytically 

presented in previous publications [4,5] and will be shortly 

described here: 

Available patient-individualized imaging data are used to 

define the area of interest which is discretized by a 3D cubic 

grid. The “voxel” of the grid is called ‘‘geometrical cell’’ 

(GC). Each GC within the tumor volume is occupied and 
initialized with a population of cells (e.g.109 cells/cm3) [6],  
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The cell kinetics of tumor growth and response to 

chemotherapy incorporated in the model is illustrated in 

figure 1. The basic cell categories are the following: 

proliferating, dormant, dead and differentiated cells. 
Proliferating cells include stem (cells of unlimited mitotic 

potential) and LIMP cells (LImited Mitotic Potential cells) 

lying in G1, S, G2 or M cell cycle phases. Dormant cells 

include stem and LIMP cells residing in dormant state, 

whereas dead cells include necrotic and apoptotic cells. 

Differentiated cells have no mitotic potential. The transitions 

between the different states indicated in figure 1 incorporate 

several biological phenomena.   

At each computational time step the grid is scanned in two 

phases: firstly the rules of the cytokinetic model (figure 1) 

are applied and secondly a geometrical reconstruction of the 

tumor (shrinkage/expansion) is performed. 
The tumor dynamics model parameters are defined in the 

appendix (Table III). Plausible reference values of the 

various model parameters retrieved from literature in 

conjunction with accumulative basic science and clinical 

experience are noted in Table I. 

 
Figure 1.  Tumor cell growth and therapy kinetics 

 

Figure 2.  The simulated Wilms tumor chemotherapy treatment 
protocol (SIOP/GPOH clinical trial) 

Modeling Nephroblastoma Treatment Response Cases with In-Silico 
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TABLE I.  TUMOR DYNAMICS MODEL  PARAMETERS 

Symbol 

(units) 

Reference 

Value 
References T1a T2b T3c T4d 

Tc (h) 23.0 [21] 23.0 40 23.0 55 

TG0 (h) 96 [22] 96 96 96 40 

TN (h) 20 [23,24,25] 20 20 20 120 

TA (h) 6 [42, 43] 6 6 6 6 

RA (h-1) 0.001 

Derived 
from TA, 

based on 

[26,27] 

0.001 0.0008 0.001 0.001 

RADiff (h
-1) 0.003  0.003 0.003 0.003 0.05 

       

RNDiff  (h
-1) 0.001 

Derived 
from TN, 

based on 

[23,25] 

0.001 0.001 0.001 0.05 

PG0toG1 0.01  0.01 0.01 0.01 0.01 

NLIMP 3  3 3 3 3 

Psym 0.45  0.71 0.44 0.45 0.465 

Psleep 0.28  0.40 0.28 0.28 0.36 

CKRVCR 0.3 

Derived 

based on 

[7,8] 

0.32 0.3 0.252 0.33 

CKRACT 0.2 

Derived 

based on 
[9,10] 

0.213 0.2 0.168 0.22 

CKRTOTAL* 0.5 

Additive 

drug effect 

considered 

0.533 0.5 0.42 0.55 

a. T1:  Case A-Scenario A 

b. T2:  Case A-Scenario B 

c. T3:  Case B-Scenario A 

d. T4:  Case B-Scenario B 

          * CKRTOTAL is not an independent parameter of the model  

 

B. Modeling tumor chemotherapy 

Chemotherapeutically induced death is incorporated in the 

model as well. Pharmacokinetics and pharmacodynamics of 

the chemotherapeutic drugs used, [8-10] determine the 

fraction of cells which enter a rudimentary cell cycle-called 

hit-(Figure 1) leading to apoptotic death. The actual time of 

death is also defined. 

A protocol of preoperative chemotherapy with a 

combination of actinomycin-D and vincristine for unilateral 

stage I-III nephroblastoma tumors, treated according to the 

SIOP 2001/GPOH clinical trial (Figure 2), has been 
specifically simulated. 

According to the SIOP 2001/GPOH clinical trial protocol, 

vincristine i.v. bolus injection is directly followed by an i.v. 

bolus injection of actinomycin-D, with no delay in-between. 

In the simulation model vincristine is assumed to bind at 

cells at all cycling phases and lead to apoptosis at the end of 

M phase [11-13]. Actinomycin-D is considered to bind to 

cells at all phases (including G0) and lead to apoptosis at the 

end of the S phase [14]. 

The estimation of typical values of the cell kill ratios of 

vincristine and actinomysin-D is based on relevant 

pharmacokinetics and pharmacodynamics literature [14, 7-
10]. 

An additive drug effect of vincristine and actinomycin-D 

has been assumed for all active cell cycle phases. For dormant 

cells only actinomycin-D exerts a cytotoxic effect. 

 

III. NEPHROBLASTOΜA CASES  

Several nephroblastoma tumor cases collected in the 

context of SIOP 2001/GPOH trial have been modeled so far. 

The in silico response of two (case A and case B) 

nephroblastoma cases of stromal type to preoperative 

combined chemotherapy with actinomycin-D and vincristine 

is presented.  
The anonymized imaging and clinical data have been 

provided by the clinicians. The initial and final virtual tumors 

have been spatiotemporally initialized based on MRI images 

of the clinical tumors collected at two time instants before the 

start of chemotherapy (2 days for case A and 6 days for case 

B) and after the completion (4 days for case A and 0 days for 

case B). The chemotherapeutic scheme administered is 

described in figure 2.  

Two adaptation scenarios are considered. The following 

assumptions have been made based on literature and imaging 

clinical information: 

a. Doubling time in the  range of 11–40 days [15]–[19] 
b. Growth fraction 1.5-20% for stromal type 

nephroblastomas [20] 

c. The imaging data-specified volume reduction of 

case A is 65% and of case B is 32%. 

As a first adaptation scenario (A), the two nephroblastoma 

tumors are considered to have common growth kinetics 

features as they are of the same histological type (blastemal). 
The cell kill ratio of the chemotherapeutic drugs is adapted in 

order to simulate the volume reduction induced by 

chemotherapy.  

As a second adaptation scenario (B), the effect of the 

chemotherapeutic drugs is considered common for both cases 

and the growth rate of the tumors is adapted within the range 

defined by reported literature, by perturbing the value of an 

important growth kinetic parameter according to model 

sensitivity analyses [4], the fraction of stem cells that 

perform symmetric division (Psym). 

The above assumptions in conjunction with accumulated 

basic science and clinical experience-plausible values set the 
tumor dynamic model parameters (Table I) for cases A, B 

and under scenarios A, B. 

The time course of the volume of the four virtual tumors is 

presented in figure 3. The resultant virtual tumor 

characteristics and volume reduction are given in table II. 

 
Figure 3.  Tumor volume time evolution for the four simulation             

scenarios (Table 1): A: T1, B: T2, C: T3, D: T4 

 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0017594?imageURI=info:doi/10.1371/journal.pone.0017594.t001#pone-0017594-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017594#pone.0017594-Tan1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017594#pone.0017594-Carr1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017594#pone.0017594-Berrebi1
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TABLE II.  TUMOR CHARACTERISTICS AND VOLUME 

REDUCTION PERCENTAGES FOR THE FOUR VIRTUAL TUMOR 

SCENARIOS ( TABLE 1) 

Resultant initial tumor 

characteristics 
T1a T2b T3c T4d 

Volume Doubling Time, Td = ln2/k 

(days) 
28.5 40.37 28.5 19.8 

Initial percentage of proliferating 
cells (Growth Fraction) (%) 

13.38 12.62 13.38 14.52 

Tumor volume reduction 

percentage (%) 
64.24 65.02 32.17 32.58 

a. T1:  Case A-Scenario A 

b. T2:  Case A-Scenario B 

c. T3:  Case B-Scenario A 

d. T4:  Case B-Scenario B 

 

 

IV. DISCUSSION-CONCLUSION 

Two blastemal type nephroblastomas (case A and B) are 
treated according to SIOP 2001/GPOH clinical trial protocol 
for uniratelar stage I-III nephroblastoma tumors. The specified 
by the available imaging data (pre and post) chemotherapy 
induced reduction of the tumor volume is 65% and 32% 
respectively. 

The difference in the chemotherapy outcome might reflect 
different tumor dynamics (Scenario B) or different response to 
the chemotherapeutic treatment (Scenario A). 

These two scenarios have been simulated and adapted to 
literature and imaging clinical information. The imaging data-
specified induced volume reduction for both cases has been 
successfully adapted. The growth fraction and the doubling 
time for both cases stand within the plausible range.  

Under Scenario A, both tumors have the same doubling 
time and growth fraction. In order to achieve the specified 
clinical volume reduction, the additive drug effect relative 
difference (to the reference value) between the two cases is 
23%.    

Under Scenario B, the effect of therapy is the same for 
both tumors and the growth kinetics of tumors differ. Case A 
which presents greater volume reduction, appears to have 
higher doubling time and lower growth fraction. Conclusively 
the less aggressive tumor reveals better response to 
chemotherapy (Table II). 

The fitting of the selected nephroblastoma cases to the 
clinical data serves as an example, demonstrating a possible 
procedure towards the formation of virtual scenarios, based on 
the combined use of the available clinical and literature data.  
As indicated by the previous adaptation examples, adequate 
“tuning” of the simulation results could give valuable hints 
concerning tumor characteristics for which actual estimations 
might be missing in each case considered. 
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 

Nephroblastoma is the most common malignant renal tumor 

in children. Today about 90 % of the patients can be cured by 

chemotherapy and surgery. Most of the patients are enrolled in 

prospective clinical trials. In the SIOP (International Society of 

Pediatric Oncology) approach all children do receive 

preoperative chemotherapy to shrink the tumor before surgery. 

Patients with an excellent response to preoperative 

chemotherapy have a better outcome than those with a poor 

response. Response is not only defined by tumor volume 

shrinkage but also by the vanishing of blastemal tumor cells. 

Imaging studies are used to calculate tumor volume and to 

define vital, necrotic and cystic areas within a tumor. In case of 

nephroblastoma it would be of most importance to further 

separate the vital tumor in blastemal and non-blastemal 

components. This would allow changing treatment at an early 

phase in case of remaining blastema. Using the DoctorEye 

software, tumors can be easily rendered and histograms of the 

signal intensities within a tumor are possible to calculate. Our 

preliminary results show that these histograms give further 

insight in the tumors in single patients by correlating them with 

the histological findings.  

I. INTRODUCTION 

Nephroblastoma is the most common malignant renal tumor 

in children. Dramatic improvements in survival have 

occurred as the result of advances in interdisciplinary 

treatments. They are based on several multicenter trials and 

studies conducted by the SIOP in Europe and COG 

(Children’s Oncology Group) in North America. Main 

objectives of these trials and studies are to treat patients 
according to well-defined risk groups in order to achieve 

highest cure rates, to decrease the frequency and intensity of 

acute and late toxicity and to minimize the cost of therapy. In 

that way the SIOP trials and studies largely focus on 

preoperative therapy [1]. The concept of neoadjuvant 

chemotherapy plays an important role in the treatment for 

most pediatric solid tumors today [2]. The complete surgical 

removal of a shrunken tumor is facilitated, mutilation caused 

by surgical procedures is minimized or avoided and 

micrometastases, not visible at diagnosis, are treated as early 

as possible. Besides that, response to treatment can be 
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measured individually by tumor volume reduction and / or 

percentage of therapy induced necrosis at the time of surgery 

in the histological specimen. This gives an early individual 

prognostic parameter and is used for individualizing 

postoperative treatment [1].  
DoctorEye [3] is an open access, flexible and easy to use 

platform, for intuitive annotation and segmentation of tumor 
regions. Its clinically driven development followed an open 
modular architecture focusing on plug-in components. 
DoctorEye’s main advantage is that the user can quickly and 
accurately delineate complex areas in medical images in 
contrast with other platforms that do not facilitate the 
delineation of areas with complicated shapes. Additionally, 
multiple labels can be set to allow the user to annotate and 
manage many different areas of interest in each selected slide. 
The close collaboration with clinicians in designing the 
platform has ensured that it can be effectively used in the 
clinical setting. 

Another reported feature [4] that adds value to the 
platform is that it allows computational “in-silico” models of 
cancer growth and simulation of therapy response to be easily 
plugged in, in order to provide a future integrated platform for 
modeling assisted therapy decision making. Currently, 
DoctorEye’s development team is working towards 
incorporating such models in the platform. In this context, the 
platform could also serve as a validation environment where 
the simulation predictions could be compared with the actual 
therapy outcome in order to achieve a global optimization of 
the modeling modules. DoctorEye platform has been actively 
developed in the frames of ContraCancrum European 
Commission ICT research project [5] and at the moment it 
serves as an intuitive 3D annotation system. 

II. PROCEDURES AND METHODS 

A. DoctorEye platform design 

DoctorEye platform is based on the .NET framework 
architecture and can be used in any Windows-based 
computer. The graphical interface is based on well-known 
Microsoft Office applications to ensure a user-friendly 
environment. 

We have been using DoctorEye over a large amount of 
datasets and found the platform’s environment simple, 
intuitive and user friendly. Only some basic knowledge and 
experience of annotation/simulation processes are required to 
use the system. 

B. Segmentation Methods Applied 

Segmentation is the process dividing an image into 
regions with similar properties such as gray level, color, 
texture, brightness, and contrast. The role of segmentation is 
to subdivide the objects in an image; in case of medical image 
segmentation the aim is to: 
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 Study anatomical structure 

 Identify Region of Interest i.e. locate tumor, lesion 
and other abnormalities 

 Measure tissue volume to measure growth of tumor 
(also decrease in size of tumor with treatment) 

 Help in treatment planning prior to radiation therapy; 
in radiation dose calculation 

Automatic segmentation of medical images is a difficult 
task as medical images are complex in nature and rarely have 
any simple linear feature. 

Medical image segmentation has been a subject of the 
advanced research activities in the past years. Both the 
automatic and semiautomatic detection and delineation of 
tumors, generally involve different types of tissue and fuzzy 
boundaries rendering them difficult to segment. At this phase 
of the development, we focus mostly on MR imaging 
modality as the clinicians in Wilms tumor cases have mostly 
used MRI. 

Two different, in terms of underlying theoretical concepts, 
segmentation algorithms are currently available in the Doctor 
Eye platform: namely the “Magic Wand” and “Spatially 
Adaptive Active Contours”, additionally, due to program 
flexibility any other algorithm can be easily plugged-in. The 
first is based on image intensity, whereas the “active 
contours” are model-based. 

III. SEGMENTATION OF WILMS’ TUMOR 

Tumor images segmentation activities in general are very 
complex due to high variability of tumor structures. Since 
manual segmentation is time-consuming, and, on the other 
side, a fully automatic technique is not applicable because the 
enrolment of the clinician’s expertise/supervision is required, 
the best choice seems to be the semi-automatic technique. In 
order to assure a knowledge-based background for further 
research activities related to semi-automatic technique, in the 
frames of our research activities the manual 
segmentation/annotation of the Wilms’ tumor has been 
performed. 

Our preliminary results could be divided in two 
conventional parts where the first part presents the 
segmentation/annotation of Wilms’ tumor by using the semi-
automatic technique, and the second part presents the 
segmentation/annotation of Wilms’ tumor performed by using 
the manual technique: 

A.  Segmentation of Wilms’ Tumor (semi-automatic 

technique) 

Segmentation of Wilms’ Tumor by using a semi-
automatic snake-based approach for tumor segmentation, 
based on the use of locally adaptable parameters has been 
described in details by Farmaki et al. [6]. This reported 
method exploits gradient and curvature characteristics to 
compute adaptive sets of parameters which guarantee that the 
evolving snake is rigid and forceful inside the desired 
boundary, in order to overcome small inhomogeneities, and 
very flexible near the tumor borders, in order to accurately 
adjust to boundary details. 

It clearly improved tumor segmentation results comparing 
to previous methods, since the average overlap, produced by 
the described method’s application on several medical 
volumes, was 89%, while the corresponding overlap for 
traditional snakes and region growing was 82.5 and 59.2%, 
respectively. 

The figure bellow (Figure 1) [6] presents the results of the 
application of the descried method on three MR scans, here 
the spatially adaptive active contours was used. (a) shows the 
clinician’s annotation of the tumor, (b) shows the traditional 
active contour’s result, and (c) depicts the result obtained.  

 

Figure 1.  Tumour segmentation on MR abdominal images: (a) clinician’s 

annotation, (b) result using traditional snakes, (c) result using spatially 
adaptive active contours. 

B. Segmentation of Wilms’ Tumour (manual technique) 

The manual segmentation of the Wilms’ tumour technique 
has been performed in our research to annotate precisely and 
with minimal possible errors the tissue of Wilms’ tumour. 
This approach, at first stage, allowed us to benchmark the 
manual and semi-automatic techniques. Also, it allowed us to 
assess the output of the DoctorEye’ segmentations tools: 
Pencil, Magic Wand, Active Contours (Greedy & Snake). 

DoctorEye platform has advanced segmentation/ 
annotation tools which allow the end-user to select with high 
accuracy the Wilms’ tumor tissue but according to our 
preliminary results the most precise seems to be the “Pencil” 
interface. The only disadvantages are the time related 
restrictions; segmentation/annotation of the areas of interest 
with the “Pencil” tool requires much more time comparing to 
Magic Wand and Active Contours (Greedy & Snake) tools. 
Nevertheless, the results of “Pencil” tool 
annotation/segmentation are precise and with minimal 
possible errors. An example output (in red color) of the 
“Pencil” segmentation/annotation is presented in Figure 2. 
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Figure 2.  Pencil segmentation/annotation tool example 

IV. ADDRESSING PRE/POST CHEMOTHERAPY CHANGES 

The main goal of the conducted Wilms’ tumor 
segmentation activities was to address the pre/post 
chemotherapy changes in MR images. The aim of this 
research was to identify and to report changes after 
chemotherapy in tumor volume estimated with DoctorEye 
platform, and to compare the histopathological class to these 
changes. 

DoctorEye platform allows the end-users to generate the 
histograms of the segmented/annotated region(s). A 
histogram could be generated for one image or for all images 
in the available data set. An image histogram is a graphical 
representation of the tonal distribution in a digital image. The 
horizontal axis of the graph represents the tonal variations, 
while the vertical axis represents the number of pixels in that 
particular tone. The left side of the horizontal axis represents 
the black and dark areas, the middle represents medium grey 
and the right hand side represents light and pure white areas. 

Wilms’ tumor regions in MR pre/post chemotherapy 
images of 20 cases/patients have been segmented/annotated. 
From 16 cases the following criteria were available for further 
analysis (Table 1): 

 confirmed unilateral Wilms’ tumor (post-surgery 
histopathology results) 

 presence of pre/post chemotherapy  DICOM images 
(MRI) data sets 

 enrolment in SIOP 2001 trial (signed informed 
consent) 

 availability of Wilms’ tumor’s histopathology type 
data (post-surgery histopathology) 

Close to annotated/segmented MR images, DoctorEye 
platform has been used as well to identify the pre/post 
chemotherapy tumor volume change. The generated 
histograms of the annotated/segmented MR images have been 
divided in pre/post chemotherapy charts (Figures 3, 4, 5). 

 

Figure 3. Case 4 (C4) - "Median" Post-chemotherapy histogram 

 

Figure 4. Case 7 (C7) - "Left shift" Post-chemotherapy histogram 

 

Figure 5. Case 10 (C10) - "Right shift" Post-chemotherapy histogram 

Wilms’ tumor presents as a large, solid tumor of renal 
origin. The tumor may be homogeneous, but typically appears 
heterogeneous with intermediate signal intensity on T1-
weighted images and high signal intensity on T2-weighted 
images [7]. In our cases we decided to annotate/segment only 
T2-weighted images due to increased signal intensity 
specifically in T2 images [8]. Size and extent of tumor 
regions have been precisely identified and 
annotated/segmented. 
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TABLE I.  THE RESULTS OF WILMS’ TUMOUR SEGMENTATION (16 

CASES) 
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C1 80% 

70% Blastema 

Left shift 443,075 182,873 30% Epithelia 

0% Stroma 

C2 80% 
80% Blastema 

Left shift 76,514 7,025 20% Epithelia 

0% Stroma 

C3 20% 
50% Blastema 

Left shift 143,629 19,385 25% Epithelia 

25% Stroma 

C4 5% 
0% Blastema 

Median 288,629 86,017 100% Epithelia 

0% Stroma 

C5 2% 
4% Blastema 

Slight 

left shift 
592,262 497,733 2% Epithelia 

94% Stroma 

C6 50% 

10% Blastema 
Slight 

left shift 
967,886 97,465 60% Epithelia 

30% Stroma 

C7 10% 
20% Blastema 

Left shift 1041,203 390,448 30% Epithelia 

50% Stroma 

C8 10% 
0% Blastema 

Almost 

median 
319,142 144,28 50% Epithelia 

50% Stroma 

C9 30% 
40% Blastema 

Right 

shift 
1117,213 1292,07 30% Epithelia 

30% Stroma 

C10 5% 
50% Blastema 

Right 

shift 
804,95 756,57 45% Epithelia 

5% Stroma 

C11 95% 
90% Blastema 

Left shift 748,875 109,334 10% Epithelia 

0% Stroma 

C12 30% 
2% Blastema 

Almost 

median 
964,169 515,963 8% Epithelia 

90% Stroma 

C13 90% 

50% Blastema 
Slight 

left shift 
105,884 11,504 50% Epithelia 

0% Stroma 

C14 70% 

90% Blastema 
Right 

shift 
1691,756 974,453 0% Epithelia 

10% Stroma 

C15 25% 
10% Blastema 

Right 

shift 
800,874 756,212 60% Epithelia 

30% Stroma 

C16 30% 
15% Blastema 

Left shift 895,801 615,809 25% Epithelia 

60% Stroma 

V. PRELIMINARY FINDINGS AND CONCLUSIONS OF FURTHER 

WORK 

DoctorEye’s manual and semi-automatic segmentation 

techniques combined with integrated correction tools assist 

in the fast and refined delineation of Wilms’ tumors and 

different users are able to add different components such as 

tumor growth and simulation algorithms for improving 

therapy planning. DoctorEye platform has been successfully 

tested and practically used over a large number of Wilms’ 

tumor MRI datasets and it ensured stability, usability, 

extensibility and robustness with promising results. 

Our preliminarily findings confirm the evidence of 

significant shrinkage or volume change of the tumors 

following primary chemotherapy (excepting the case C9). 

Changes in Wilms’ tumor after chemotherapy have been 

addressed for the first time (to our knowledge) by using the 

advanced segmentation/annotation techniques and the 

histogram generation interfaces of DoctorEye platform. This 

research was the first report to specifically present pre/post 

chemotherapy changes of Wilms’ tumor histograms close to 

the related volume changes. 

We hypothesize that the histograms of Wilms tumor 

images (MR) might have prognostic and histopathological 

diagnostic information with implications for the clinical 

assessment of response to chemotherapy. These data can then 

be used to optimize the Oncosimulator for predicting 

response to preoperative chemotherapy in Wilms tumor [9]. 

More research activities and clinical cases are required in 

order to confirm our preliminary hypothesis and we are 

expecting that in the nearest future we will strengthen our 

initial findings with additional evidence-based results. 
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 

Abstract— In the present study, methods aiming at 

supporting the personalization of an Acute Lymphoblastic 

Leukemia (ALL) Model (ALL Oncosimulator), already in 

development by the In Silico Oncology Group, National 

Technical University of Athens, are provided. Specifically, a 

population pharmacokinetic model for orally administered 

prednisone in children with ALL is developed, and the ability 

of classification algorithms to predict the prednisone response 

using gene expression data is studied.  

I. INTRODUCTION 

Acute lymphoblastic leukemia (ALL) is one of the most 

common malignancies in childhood. Despite the significant 

advances made in the treatment of childhood ALL during 

the last decades, for approximately 25% of patients therapy 

still fails. Therefore, in conjunction with the forthcoming 

advances in the treatment of ALL, the development of multi-

scale computational models is believed to contribute to 

further understanding of the disease and to the optimization 

of therapeutic strategies. Efforts on developing such a 

model, the ALL Oncosimulator, have already began by the 

In Silico Oncology Group (ISOG) of ICCS,NTUA, adopting 

similar modeling principals with already developed 

Oncosimulators [1].   

Glucocorticoids, including Prednisone (PRED), belong 

to the main core of the treatment scheme followed in the 

ALL-BFM 2000 clinical trial and also in the majority of 

ALL- related chemotherapeutic schemes [2], since they are 

administered in almost every phase of treatment [3]. Apart 

from their therapeutic contribution, arising from the ability 

to induce apoptosis and cause cell cycle arrest in leukemic 

cells [2], response to PRED administration during the first 7 

days of induction therapy (60 mg/m2 of PRED orally given 

every 24 hours and one intrathecal dose of Methotrexate), is 

of crucial importance in order to categorize patients in high, 

intermediate or standard risk groups. 
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Despite the significant role of PRED in the treatment of 

childhood ALL, the number of studies referring to the 

pharmacokinetic (PK) properties of PRED and its active 

metabolite Prednisolone (PREDNL) in children facing ALL 

is small, and even fewer studies deal with the modeling of 

their pharmacokinetics. Importantly, to our knowledge, a 

population PK modeling study for orally administrated 

PRED specifically in children with ALL has not been 

proposed yet. Such a model could allow the prediction of the 

pharmacokinetic behavior of PRED and PREDNL in 

patients enrolled in the ALL-BFM 2000 trial and the study 

of their pharmacodynamics in integration with the ISOG 

ALL Oncosimulator, in a personalized way. On the other 

hand, a population PK model of PREDNL in children with 

ALL has been proposed in [4], and various models for the 

PKs of orally administrated PRED are given in [5], [6]. So, 

a central target of the present study is to create a model 

capable of simulating the population PKs of PRED and 

PREDNL in childhood ALL patients based on existing 

related proposed models, due to the lack of PK data for 

orally administrated PRED in children with ALL. 

Moreover, the highly significant knowledge of the 

Prednisone Response Group (PRG) of every patient, till 

today, could only be inferred after the first 7 days of PRED 

treatment by measuring the number of peripheral blood 

leukemic blasts persisting after the induction therapy phase.  

A priori knowledge of the PRED response category would 

enable clinicians to promptly optimize the treatment in a 

patient-specific manner. This knowledge would be also 

considerably informative for the procedures of personalized 

initialization and adaptation of the ALL Oncosimulator’s 

input parameters, since it has been shown that leukemic 

cells exhibit differential inter-patient characteristics as far as 

PRG is concerned (e.g. both the induction of glucocorticoid 

induced apoptosis and cell cycle arrest are more evident in 

good response group [7], [8]). Up to now, significant efforts 

have been made in order for the genes showing differential 

expression before and after the initial treatment of childhood 

ALL to be identified between poor and good responders [9–

13]. Moreover, the prediction of the outcome of initial 

phases of treatment has been attempted by using the 

expression data of specific genes [9], [11]. However, to our 

knowledge, the prediction of the PRG using gene expression 

data has not been attempted yet, especially using the 

available  (within the context of the p-medicine project 

(FP7-ICT-2009.5.3) ) set of genes (86 in number), which 
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derives from the acquired knowledge for the differentially 

expressed genes between the two groups described in [12]. 

The present study consists of two distinct sections: one 

for the derivation of a PK model for orally administered 

PRED in children with ALL and one for the study of the 

capability of various classification algorithms to predict the 

PRG of patients based on gene expression data. Although 

these two tasks have been treated autonomously, they share 

the same target of contributing to the personalization of the 

ALL Oncosimulator. 

II. ORAL PREDNISONE POPULATION PHARMACOKINETICS IN 

CHILDREN WITH ALL 

A. Existing Prednisone Related Pharmacokinetic Modeling 

Studies 

As previously described, a number of studies have dealt 

with the PK modeling of PRED and/or its active metabolite 

PREDNL. However, for the creation of the newly proposed 

PK model of oral PRED only some of them were chosen to 

be combined. 

In [4] the modeling of population PKs of orally or 

intravenously administered PREDNL in children with ALL 

has been studied. Briefly, a 2-compartmental PK model for 

oral PREDNL has been proposed, where the drug is 

absorbed by a first order process in the Central 

Compartment (of volume Vc). After the absorption, the drug 

can be reversibly transferred to the Peripheral Compartment 

(of volume Vp) (Inter-compartmental clearance rate: CLd) or 

eliminated from the Central Compartment (Clearance rate: 

CL). Together with the pharmacokinetic model, a regression 

model able to predict the values of PK parameters (CL, Vc, 

Vp), fitted to PK data of children with ALL has been given, 

having as input the Body Surface Area (BSA) and the 

Weight (WT) of the patient. This regression model is of 

crucial importance since it permits the estimation of the 

basic pharmacokinetic parameters of the active metabolite of 

PRED, PREDNL, in a personalized way. 

In [5] a model for the prediction of PRED and/or 

PREDNL levels in human plasma after either oral or 

intravenous administration of PRED or PREDNL was 

proposed. In this model either PRED or PREDNL are firstly 

absorbed in a depot compartment in a percentage of the 

given dose, determined by the bioavailability of the drug. A 

fraction of the drug is absorbed by a first order process in its 

parent form (PRED or PREDNL) and the remainder in the 

metabolized form (PREDNL or PRED) due to the first pass 

conversion of the drug. Two additional compartments 

concern the volume of distribution of the two forms of the 

drug which could further be reversibly metabolized. Both 

forms of the drug could be eliminated from the related 

compartment. 

B. Development of a Pharmacokinetic model for orally 

administered Prednisone in children with ALL 

As already stated, the acquirement of a PK model 

capable for simulating the pharmacokinetics of PRED in 

children with ALL is of crucial importance for the accurate 

simulation of the related therapy by the ALL Oncosimulator. 

However, such a model, to our knowledge, does not exist, 

and the lack of data for the levels of PRED and PREDNL in 

blood plasma of children with ALL after oral administration 

of PRED does not allow the development of a new 

population PK model dealing with the details of PRED PKs 

such as PRED and PREDNL levels, their reversible 

metabolism, bioavailability and other significant PK 

parameters. So, an already derived population PK model [4], 

has been reutilized in order to simulate the levels of the 

active metabolite of PRED, PREDNL in a personalized way. 

However some specific extensions of this model had to be 

made in order to be capable for simulating the absorption of 

orally administrated PRED as well. The modeling principles 

for these changes, were acquired from the model presented 

in [5]. 

1) The structure of the extended proposed model 

The structure of the proposed oral PRED PK model, 

combining parts of previously presented models ([4], [5]) is 

shown in Figure 1. Orally administered PRED is firstly 

absorbed in a depot compartment in a percentage of the 

given dose, determined by the bioavailability (F) of the drug,  

as in [5]. A fraction of the drug (fPREDNL) is absorbed in its 

metabolized form (PREDNL), due to its instant first-pass 

conversion, by the Central Compartment, which is identical 

to the Central Compartment in [4], by a first order process 

(ka). Similar to [4], the absorbed drug could be reversibly 

transferred (inter-compartmental clearance rate: CLd) to 

Peripheral Compartment (which is also identical to the 

Peripheral Compartment in [4]) or eliminated from Central 

Compartment (Clearance rate: CL). The assumption made 

here is that the major part of conversion from PRED to 

PREDNL is already done by the first pass conversion. So, 

the following reversible metabolism of PRED to PREDNL 

and the levels of PRED in the two compartments (Central 

and Peripheral) are not modeled, a choice also made in [4] 

for the administration of PREDNL. Moreover, the same 

                    

Figure 1. The structure of the proposed pharmacokinetic model for orally 

administered Prednisone. 
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assumption was made in [6] for the case of orally 

administered PRED.  

2) Evaluation of the model using Pharmacokinetic data 

In order to ensure that the proposed model, as far as its 

structure is concerned, is capable for simulating the PKs of 

PREDNL after oral administration of PRED, PK data from 

children treated with oral PRED have been used for 

parameter fitting. Unfortunately, as already mentioned, such 

data could not be found in literature for children with ALL. 

However, data from children with nephrotic syndrome, 

treated with oral PRED are given in [14]. The measurements 

taken in remission phase were used, although it is shown by 

the same study that the prednisolone levels during the active 

phase did not differ significantly from those observed during 

remission. In order for the figure depicting the mean 

concentration of free PREDNL after oral administration of 

55mg of PRED measured in [14] to be digitized and 

quantified, the GetData Graph Digitizer 2.25 software was 

used and the acquired data are given in Figure 2.  

The fitting of the model was done by using the 

Parameter Fit functionality of MATLAB 2012a (The 

MathWorks Inc., 2012, Natick, Massachusetts) SimBiology 

Toolbox (individual fit using NLINFIT function). In order to 

acquire initial values for the pharmacokinetic parameters, 

the regression model of [4] was used. It should be noted that 

the initial estimate for Vc was slightly changed from the 

value that the regression model dictates in order for a first 

adequate fit to the data to be achieved by manual fine 

tuning. A higher value in Vc is expected due to lower (even 

in remission phase) serum albumin concentration found in 

patients in [14] (29 g/l) in contrast with the patients in [4] 

(36 g/l). After the parameter estimation procedure, the PK 

model was able to accurately simulate the dynamics of 

PREDNL levels in the Central Compartment as shown in 

Figure 2. 

III. PREDNISONE RESPONSE PREDICTION  

A.  Available data, preprocess analysis, classification 

algorithms and gene selection methods 

In the context of p-medicine project (FP7-ICT-2009.5.3), 

data for a number of 665 patients, enrolled in the ALL-BFM 

2000 clinical trial, has been made available. Among others, 

the expression levels for a set of 86 genes that are 

recurrently identified as being differentially expressed 

between Good and Poor Prednisone responders [12] were 

given. Although considerable efforts have been made in 

order to identify the genes that are differentially expressed 

between these groups [10], [12], [13], the given set has not 

been studied for the statistical significance of differential 

expression and for the ability to derive a classifier able to 

predict the response group. Therefore, the main target of the 

present task was to study the predictability based on the 

given set of genes and the statistical significance of their 

potential differential expression as well, in order to ensure 

that the findings do not apply only to the observed dataset. 

As far as preprocess analysis from patient datasets are 

concerned, the example of similar previous studies [9], [11] 

has been followed. More specifically, only patients facing 

precursor B-ALL, negative for chromosomal rearrangements 

TEL-AML1, BCR-ABL an MLL-AF4 were included, and 

patients showing DNA index different from 1.0 were 

excluded. This first separation of data resulted in 259 

prednisone good responders (PGR) and 26 prednisone poor 

responders (PPR). However, in order to avoid statistical bias 

in the first class, a random choice of 26 patients from the 

PGR category has been made trying to match every patient 

from the poor response category to a patient with same 

characteristics for age, sex and white blood cells (WBC) 

count from the good response category, a step proposed and 

followed in [12]. The final sets of data were introduced into 

MATLAB. Any missing expression value was filled by 

using the knnimpute function which replaces the missing 

values with a weighted mean of the k nearest-neighbor (the 

value of k was chosen to be 10). 

The classification algorithms used were the Discriminant 

Analysis (DA) algorithm implemented in MATLAB by the 

TABLE I. PREDICTION ACCURACY RESULTS OF THE DERIVED CLASSIFIERS USING THE “LEAVE ONE OUT” METHOD ON THE AVAILABLE DATA 

Classifier (Type) DA(lin.) DA(dlin.) DA(quad.) DA(dquad.) SVM(lin.) SVM(quad.) SVM(poly.) SVM(RBF) SVM(MLP) 

Gene Selection Method  Prediction Accuracy,Sensitivity,Specificity (Leave One Out Method) 

Entire Gene List (86 genes) not applicable 0.61,0.60,0.62 not applicable 0.69,0.66,0.72 0.88,0.85,0.91 0.53,0.53,0.53 0.71,0.67,0.76 0,0,0 0.55,0.57,0.54 

T-test & FDR (3 genes) 0.84,0.80,0.90 0.84,0.80,0.90 0.79,0.88,0.69 0.78,0.74,0.85 0.80,0.76,0.86 0.71,0.68,0.73 0.71,0.68,0.73 0.76,0.75,0.79 0.75,0.72,0.78 

Rank Products (13 genes) 0.76,0.81,0.73 0.65,0.65,0.65 0.73,0.71,0.75 0.65,0.62,0.70 0.71,0.72,0.70 0.59,0.61,0.58 0.61,0.69,0.58 0.57,0.57,0.57 0.61,0.60,0.62 

Gene Selector (9 genes) 0.80,0.78,0.83 0.86,0.80,0.95 0.71,0.78,0.66 0.73,0.83,0.67 0.86,0.80,0.95 0.63,0.64,0.62 0.69,0.67,0.70 0.67,0.68,0.66 0.75,0.74, 0.76 

 

 

Figure 2. The results of the proposed pharmacokinetic model simulation 

after the parameter estimation procedure using the data given in [14]. The 

solid black circles refer to the measurements and the blue line refers to the 

predicted concentrations of the drug in the Central Compartment. 
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classify function (using linear, diaglinear, quadratic and 

diagquadratic options) and the Support Vector Machine 

algorithm implemented in MATLAB by the svmtrain and 

svmclassify functions (using linear, quadratic, polynomial, 

rbf and mlp options for kernel). In order to evaluate the 

performance of the classifiers, the Leave One Out method 

was used. In order for the classifiers to be accepted as a tool 

able to predict the category of a given patient, we had to 

ensure that their discriminative power is not limited only in 

the dataset used for their training, by confirming that the 

classification features used, here the gene expression values, 

show statistically significant differences between the groups. 

Therefore, before training the classification structures, 

various statistical tests have been made which were: the two 

sample unpaired t-test and the estimation of false discovery 

rate (FDR) for multiple hypothesis testing (using mattest 

and mafdr functions in MATLAB), the Rankproducts 

method (using Bioconductor package ‘RankProd’ in R (R 

Foundation for Statistical Computing, Vienna, Austria)) and 

the GeneSelector method (using Bioconductor package 

‘GeneSelector’ in R), combining three well established 

rankings methods together with the t-test for unequal 

variances (Welch’s T-statistic in Gene Selector package), 

the parametric empirical Bayes (limma package), the SAM 

statistic (samr package) and the Permutation test (multtest 

package).  

B. Classification Training and Testing prior and after the 

Gene Selection 

The results of prediction accuracy after training the 

classifiers with the different sets of genes as classification 

features are shown in Table I. The results of the Leave One 

Out method are presented because it is believed to be the 

most significant criterion, since in a real life scenario, a 

single new patient should be classified based on the 

knowledge acquired by all the previously encountered 

patients. As it can be seen for the case of using the Gene 

Selector feature selection and the SVM classification 

algorithm with linear kernel, a prediction accuracy of 

86.54% with particularly good sensitivity and specificity 

statistics is achieved, which does not deviate significantly 

from the performance of the same algorithm prior to the 

gene selection step. This, as already stated, strengthens the 

applicability of the classification scheme to the population 

from which the data samples were taken. 

IV. CONCLUSION 

In the present study, both the development of a 

pharmacokinetic model for orally administered prednisone 

in children with ALL has been achieved and the ability for a 

classification scheme able to predict the Prednisone 

Response Category of patients has been investigated. The 

results showed that the proposed pharmacokinetic model is 

capable for simulating the time evolution of the 

concentration levels of free prednisolone after oral 

administration of prednisone in children. Moreover, the 

prediction accuracy of the derived classifiers is reasonably 

good so as to support the use of such a tool for the 

Prednisone Response Category prediction. Therefore, the 

proposed tools presented in this study are believed to be able 

to support the procedure of parameterization of the ALL 

Oncosimulator in a personalized way.       
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 

Abstract— The use of chemoradiotherapy (CRT) is 

widespread but quantitative evaluation of the benefit accruing 

from concomitant use of cytotoxic drugs is difficult since 

radiation and chemotherapy "doses" are currently expressed in  

different and incompatible ways. As the biological impact of any 

radiotherapy schedule may be expressed in terms of a 

biologically effective dose (BED) it is shown that chemotherapy 

effects can be similarly quantified, allowing drug contributions 

to be expressed in terms of a radiation-equivalent quantity 

which is familiar to radiation oncologists. This paper discusses 

various ways in which chemotherapy can enhance radiation 

effect and derives the associated BED equations. The 

availability of such equations can potentially help inform 

clinical judgement in relation to the true value of CRT 

treatments and also allows derivation of alternative, radiation-

only, schedules.     

I. INTRODUCTION 

The combined use of concomitant cytotoxic 
chemotherapy and radiotherapy (chemoradiotherapy, CRT), 
is widespread. Chemotherapy agents can provide useful gains 
(typically 10 - 20%) in tumour response, the improvement 
coming mostly from increased local tumour control 
probability (TCP) control rather than a decrease in distant 
metastases.   Although there exists an extensive literature 
relating to the modelling of cases where cytotoxic drugs are 
used in isolation (e.g. [1,2]). There may be several 
mechanisms by which drugs can enhance radiation cell kill 
and at present these are not well-understood. Additionally, 
radiotherapy and chemotherapy "doses" are currently 
specified in entirely different and incompatible ways, thus 
providing a major additional complication when attempting 
to evaluate CRT.   

CRT is favoured if the resultant loco-regional control is 
better than that achieved by either chemotherapy or 
radiotherapy alone and for comparable normal tissue 
toxicity. However, one of the difficulties in evaluating CRT 
lies with the fact that the addition of chemotherapy may 
bring new patterns of toxicity not associated with radiation 
alone.  In this regard the design of clinical trials has not 
always been especially good since ideally a minimum three-
arm strategy (radiotherapy alone at dose D1, radiotherapy at 
dose D1 + drug; radiotherapy alone at higher dose D2) is 
ideally required.  

There is thus a need to attempt to evaluate CRT in terms 
of parameters which link directly to the large volume of 
clinical experience which has accrued from the use of 
radiotherapy alone. One way of achieving this is by 
application of the linear-quadratic (LQ) model of radiation 
effect, which is widely used for the radiobiological 
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quantification of  radiotherapy [3-5]. Originally developed 
for the analysis of conventional fractionated treatments, it 
has since been extended to cover many other patterns of 
radiation delivery, e.g. continuous low dose-rate therapy, 
permanent implants, targeted radionuclide therapy, etc [6,7]. 
On account of the growing worldwide interest in particle 
therapy (i.e. treatments involving protons, neutrons, carbon 
ions, etc), the LQ model has also been adapted to be used for 
quantifying high-LET (Linear Energy Transfer) radiations 
[8,9]. 

There are sound reasons for wishing to express 
chemotherapy effects in terms of a radiation-equivalent. 
Modern radiotherapy enjoys high standards of dosimetric 
accuracy and this gives added credence to the results of   
clinical trials. Without high dosimetric standards the  
intercomparisons between different trials and schedules 
would be mostly unreliable and radiobiological modelling 
would be of little value. Present chemotherapy dose 
prescription practices do not remotely approach the high 
standards routinely expected from radiotherapy and it thus 
makes sense to attempt to quantify drug therapy results in 
radiation-equivalent measures which are familiar to clinical 
oncologists.  

In this article some possible mechanisms of drug-
enhancement are considered in terms of existing LQ 
methodology.  

II. BIOLOGICALLY EFFECTIVE DOSE (BED) AND ITS 

RELATIONSHIP TO LOG CELL KILL.  

For a fractionated radiotherapy treatment involving N 
well-spaced treatment fractions, each delivering a fixed dose 
(d), the cellular surviving fraction (S) is given by: 

 2exp dNdNS             (1) 

where  (in units of Gy-1) and  (units of Gy-2) are the 
respective linear and quadratic radiosensitivity coefficients in 
the LQ model. For clinical application it is usually more 
efficient to express treatment in terms of biologically 
effective dose (BED), defined as follows [Barendsen; 
Fowler]: 
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ln
    (2) 

BED is the physical dose required to produce the 
observed biological response if the treatment were to be 
given in an infinite number of very small fractions. It will be 

noted that BED is dependent on the ratio  (units of Gy), 
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rather than on the values of the individual radiosensitivity 

parameters. As  values (sometimes referred to as 
fractionation factors) are tissue-specific, then so also is BED. 

A typically-used generic value of / for relatively fast-
growing tumours (eg squamous cell cancers, SCCs) is 10Gy. 

For late -responding normal tissues a generic / value of 
3Gy is conventionally applied a,though, in both cases, it 
should be noted that there are important exceptions to the 
general rule. Calculated BEDs are usually written with a 

subscript (3, 10, etc) which denotes the specific / value 
assumed in the derivation.  

 For tumours which exhibit significant repopulation 
during treatment a subtractive factor may be added to the 
right hand side of (2) to reflect the reduced BED which 
results [4,5,10]. The form of the subtractive repopulation 
factor is: 

 
delayTTk           (3) 

 

where T is the overall treatment time, Tdelay is the time lag 

from initiation of treatment before which the repopulation 

begins and k is the BED equivalent of repopulation (in units 

of Gyday-1). Since this article confines itself to general 

principles the repopulation effect will not be considered in 

depth here.  

 
For what follows it is useful to gauge the nature of the 

relationship between BED and log cell kill. Re-writing the 
BED definition in (2) yields: 

BEDeS            (4)  

and, if S is expressed in the conventional logarithmic 
fashion as a number (X) of log cell kills (i.e. as 10-X), then: 

BEDX e  10         (5)  

leading to: 



X
BED

303.2
         (6)   

Table 1 shows the relationship between log cell kill and 

BED for tumours  posessing average radiosensitivity (i.e.  = 

0.35Gy-1) and a generic / value of 10Gy. The table 
additionally tabulates the equivalent number of 2Gy fractions 
required to achieve the given BEDs, as calculated via (2). 
Alternative tabular values for other assumed parameter 
values may be easily derived.  

Depending on circumstances, conventional radiation-only 
schedules typically deliver BEDs which would be expected 
to produce cell kills in the wide range 10-8 to 10-12. Since the 
additional cell kill due to cytotoxic chemotherapy can, in 
principle,  also be expressed in a similar manner to that 
described in Table I, this opens the way to expressing the 
chemotherapy component of a CRT treatment in terms of a 
radiation BED-equivalent, or in terms of an equivalent 
number of 2Gy fractions [11].      

Chemotherapy alone rarely achieves a cell kill of better 
than < 10-6 , with a number of studies suggesting that the true 

cell kill is in many cases very much less than this figure,  i.e. 
around 10

-2
-10

-3
. This may seem quite modest but, in terms 

of improved local control, could nonetheless be very 
beneficial. Such a degree of cell kill may be ineffective for 
dealing with microscopic metastases, however, thus 
challenging one of the main claims often made for adjuvant 
chemotherapy [12].    

TABLE I.  RELATIONSHIP BETWEEN LOG CELL KILL, BED AND   
EQUIVALENT NUMBER OF 2-GY FRACTIONS FOR  TUMOURS OF AVERAGE 

RADIOSENSITIVITY (I.E.  = 0.35GY
-1

) AND WITH / = 10GY. 

Cell kill BED 

Equivalent number 

 of 2 Gy fractions 

[from (2)] 

10
-1

 6.6 2.8 

10
-2

 13.2 5.5 

10
-3

 19.7 8.2 

10
-4

 39.5 16.5 

10
-10

 65.8 
27.4 

 

A further useful feature of BED is that it is an additive 
quantity, i.e. the BED associated with two different treatment 
types may be added to determine the resultant BED. Thus, 
irrespective of any assumed mechanisms, drug-induced cell 
kill can, in principle, always be expressed in terms of an 
equivalent radiation-only BED through the analysis of 
clinical outcomes. For example, suppose local control was 
found to be identical in the following two cases: 

33  2Gy (radiation alone) 

and: 

26  2.25Gy radiation + cytotoxic chemotherapy.  

Then, on account of BED additivity:  

chemoRTCRT BEDBEDBED      (7) 

and, since the CRT and radiation-only schedules are iso-
effective, the drug-induced BED (BEDchemo) is simply the 
difference between the two radiation BEDs, i.e: 
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




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10

25.2
125.226

10

2
1233chemoBED

 

i.e. BEDchemo =7.5Gy10, corresponding to what would be 
expected from around three 2Gy radiation fractions.  

III. SOME POSSIBLE MODES OF CHEMOTHERAPY 

ENHANCEMENT OF RADIATION EFFECTS.  

 Improved local control arising from the chemotherapy 

component of CRT may be a result of any one, or 

combination of, the following:   

 

 i) Independent cell kill. 

 

This implies that the chemotherapy sterilises a sub-
population of cells which may be resistant to radiation-

induced cell kill. In this case the resultant tumour BED 
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(BEDCRT) is simply given by (7). Within this general heading 

other possibilities, e.g. cell-cycle synchronisation, enhanced 

apoptosis or re-oxygenation may all intrinsically contribute to 

the general phenomenon of independent cell kill.   

 

 

 
 ii) Direct dose sensitisation. 

 

This would imply a drug-radiation interaction which 

effectively increments each fractional radiation dose. If the 

degree of enhancement is s, then BEDCRT is derived from (2) 

as: 
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In this case the chemotherapy sensitisation acts in a non-

linear way since it increments both the total dose (Nd) and 

the fraction dose (d).  

 

Since the expected radiation-only BED (without drug 

enhancement) is given by (2), the extra drug-induced BED 

inherent in (8) is the difference between the two expressions, 
i.e: 
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i.e.: 

 

 
 
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[It should be noted that, even if a subtractive repopulation 

factor (3), is included in (2) and (8), it would cancel out in 

arriving at (10)]. Thus, for a 35  2Gy radiation schedule, a 
modest dose sensitisation factor of 5% (ie s = 1.05) would 

produce a BEDchemo value of ~4Gy10. From Table I this is 
seen to be compatible with a drug-induced cell kill of less 

than 10-1, which could alternatively be achieved with two 

extra 2Gy fractions of radiation.    

  

 iii) Sensitisation of the radiation effect by increasing the  

and/or  radiosensitivity parameters. 
 

 This possibility differs from pure dose sensitisation and is 

exactly analogous to that associated with the RBE 

enhancements which result from the use of radiations 

possessing a high linear energy transfer (LET). When such 

radiations are deployed the conventional (i.e. low-LET) -

radiosensitivity parameter is increased from L to H by a 
factor  RBEmax, where: 

 

L

HRBE



max

        (11) 

 

The subscripts in (1) relate to the low-and high-LET cases. 

RBEmax is the maximum RBE that would be expected with 

the high-LET radiation when dose fractions are very small. 

RBE itself is a variable which maximised at low fraction 

dose and falls asymptotically to a lower limiting value 

(RBEmin) at high fraction dose. RBEmin is often assumed to be 

unity, but there is evidence that it may be non-unity in some 

cases [9,13]. In such cases the lower limiting value of RBE is 

related to a changed -radiosensitivity parameter and is given 
by [9]: 

 

 

L

HRBE



min         (12) 

 It has been shown [9] that incorporation of (10) and (11) 

leads to a modified version of (2) which is applicable to 

high-LET therapy: 

 































L

H
HHH

dRBE
RBEdNBED





2

min
max   (13) 

 Returning to the chemotherapy case: if a cytotoxic drug 

increases the low-LET -value by a factor A, then A 
influences the LQ formulation in the same manner as does 

RBEmax, as discussed above. Similarly, if the drug increases 

the low-LET √-parameter by a factor B, then B influences 
the formulation in an analogous manner to RBEmin.  In the 

case where A and B enhancements are both operative then: 
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The similarity of form between (13) and (14) will be noted. 

If, for example, B=0, then the chemotherapy BED 

enhancement associated with (14) is [following the same 

procedure used to derive (10)]: 
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 Comparing (10) and (15) it will be noted how pure dose 

sensitisation and radiosentivity-sensitisation lead to BED 

expressions with differing forms, the two equations being 

identical only in the special case where s=A=B.  If only one 

of the sensitisation routes is operative then (14) and (15) are 

modified simply by setting either A or B equal to unity, as 

appropriate. 

 

 In the case where CRT involves a high-LET radiation 

component, and if it is assumed that all the modifiers (A, B, 
RBEmax and  RBEmin) are operative then (14) becomes: 
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As with (13) and (14) the individual sensitising and RBE 
factors may be set to unity in cases where that is appropriate.   

 

 iv) Reduction or inhibition of tumour repopulation during 

the inter-fraction intervals. 

 

 This phenomenon could be a result of a reduction in the 

value of k, the BED-equivalent repopulation factor, or an 

increase in the lag time (Tdelay) before which fact 

repopulation becomes significant, in which case then one or 

both of these parameters would take altered values in (10).  If 

chemotherapy is able to completely inhibit repopulation then 
k=0 and (1) would not be required. 

 

IV. ESTIMATION OF CHEMOTHERAPY ENHANCEMENT FROM 

KNOWLEDGE OF CHANGED TCP.   

 Observed TCPs may also be used in the direct evaluation of 

a therapy radiation-equivalent.  If any treatment schedule 

leads to an average surviving cell number of n then, from 

Poisson statistics: 

 

 
neTCP           (17) 

 

 

 

If the initial clonogen number is C then, for a radiation-only 

schedule: 

 

RTBED
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and: 

 
RTBED
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Similarly, for a CRT schedule, and bearing in mind the 
additivity of the BEDs of the respective contributions (7): 
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Combining (19) and (20) leads to: 
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a result which is independent of C and hence of initial 

tumour size. Thus, assuming an  value of 0.35Gy-1, an 
observed increase in TCP from 0.2 to 0.5 would be 

consistent with a BEDchemo value of 2.41Gy, which is 

equivalent to the addition of one 2Gy fraction. This result 

again indicates that even modest drug contributions can 

translate to potentially very valuable improvements in 

treatment outcome. Application of (8) or (15) allows 

subsequent estimation of the specific chemotherapy 

enhancement factors from such results. 

V. DISCUSSION 

LQ methodology is well-established in radiation 
oncology  and it is demonstrated here that the same 
principles can be used to glean useful quantitative 
estimations of the value of the concurrent addition of 
cytotoxic chemotherapy to radiotherapy. Providing radiation-
based benchmarks to such deliberations is valuable, 
particularly as it appears that drug contributions, although 
often contributing to improved local control, may 
nonetheless be providing only a very modest additional 
degree of cell kill. The expression of a drug contribution in 
terms of a radiation-equivalent allows judgement to be made 
over whether the same enhancement in local control would 
be better achieved by a modest increase in radiation dose. If 
this were feasible via one of the forms of focal (e.g. Intensity 
Modulated or particle-) radiotherapy then any confounding 
issues associated with drug-induced changes to the pattern of 
normal tissue toxicity might be avoided.  

The formulations developed here are not restricted to 
drug applications and could, in principle, be applied to any 
other form of therapy which can be used in combination with 
radiation. Some steps have already been taken in using this 
approach in the assessment of hyperthermia [14].  

VI. CONCLUSION 

The expression of chemotherapy effects in terms of a 

radiation BED-equivalent could allow easier correlation 

between clinical experience with CRT and the wider range of 

radiation-only treatments. Although at present it is not 

possible to ascertain exactly which mechanism(s) might 

contribute to the chemotherapy cell kill there is a 
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straightforward relationship between BED and cell surviving 

fraction. The methodology discussed here could therefore 

have interesting application in analysing the results of 

clinical trials. Additionally, the incorporation of the 

methodology to in-silico modelling (albeit in slightly 

modified form) could allow a more detailed examination of 

the various modes of drug cell kill which might operate in 

CRT [15].   
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 

Abstract— In this paper we present preliminary results of the 

first application of TumorML being developed outside of the 

context of the Transatlantic TUmor Model Repositories project 

(TUMOR). Based on a domain-specific software framework for 

developing models to simulate vascular tumour growth, we have 

developed a corresponding domain-specific language (DSL) for 

use with the framework. The DSL script is directly embedded 

into TumorML model descriptions serving as an example of 

how within a single model description document, we can fully 

describe cancer models as functional components. We introduce 

the framework that our DSL orchestrates; show fragments of 

DSL script we have developed to describe tumour-induced 

angiogenesis; and how these functional model descriptions can 

be integrated and executed with TumorML markup. 

I. INTRODUCTION 

In computational biology, there is a diverse range of 
programming and descriptive languages that span across 
different biological domains and scales. This creates 
challenges for model reuse and composition, since each 
model implementation, even if available, may use a 
completely different technological framework. Combining 
models may therefore require porting models to a new 
framework, or re-implementing them, both costly and error 
prone activities. Before the year 2000, there were no unified 
efforts towards standardized languages for describing models. 
Markup languages for computational biology emerged soon 
after the turn of the millennium with the SBML (Systems 
Biology Markup Language) [1] and CellML [2] research 
programmes. 

Generally speaking, all application-specific markup 
languages are based on the eXtensible Markup Language 
(XML) [3], as are SBML and CellML. XML emerged as a 
popular choice for computer-based language definition in the 
late 1990’s as it defines a standard syntax on to which other 
vocabularies can be built. This allows language specific 
parsers to reuse the standard XML parsing routines for 
processing XML documents. XML-based languages are 
therefore well suited as software-neutral information 
exchange formats. XML can be thought of as the base 
alphabet and grammar of a language. What raw XML lacks is 
semantics or definitions to provide context and application. 
This is provided in part by specific vocabularies built on 
XML, which define element and attribute names and the 
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structural relationships between them. Multiple XML 
vocabularies can be combined within a single document, 
enabling the development of various languages targeted at 
specific narrow domains of discourse that can be incorporated 
into a compound language. 

We have previously discussed in [4] the drawbacks of the 
current state-of-the-art in SBML, CellML and insilicoML [5], 
where we do not believe any is expressive enough to capture 
the multi-scale nature of cancer models, and diverse 
techniques typically involved in the development of a cancer 
model such as ODEs, and PDEs. The Transatlantic TUmor 
MOdel Repositories project (TUMOR) aimed to enable 
interoperation between cancer model repositories, and to fulfil 
this aim we developed TumorML, a markup language for in 
silico oncology, first mentioned in [6] and early groundwork 
described in [7]. The original intent was to enable 
interoperation between parts of the infrastructure developed 
under TUMOR, specifically to enable model exchange 
between repositories in the United States’ Center for the 
development of a Virtual Tumor (CViT) [8] and Europe. 
However, in the longer term we view TumorML as a markup 
standard with wider applications than that of the original 
remit of TUMOR. 

Initially, TumorML was envisaged as a markup language 
that wraps existing software implementations of models in 
metadata to curate models in digital repositories, and to 
enable execution of models on computational frameworks. As 
such, the functional description of a model is treated as a 
proverbial ‘black box’ – how a model is implemented is not 
of concern in the model description; only metadata pertaining 
to parametric interfaces (i.e. I/O of data) and the minimal 
hardware and software execution requirements are ever 
described. The rationale for designing TumorML in this 
fashion was to enable support for existing implementations of 
models where the models directly concerning TUMOR 
(developed out of the ACGT and ContraCancrum projects) 
had already been implemented and optimised in the C and 
C++ general-purpose programming languages (GPLs). The 
work described in this paper addresses two drawbacks of this 
approach of wrapping up existing implementations with 
markup. Firstly, model implementations are difficult to 
validate where the underlying mathematics and algorithms 
used are not exposed. Both automated and human validation 
therefore cannot be carried out if model codes are not 
available for inspection. Secondly, implementations 
developed using GPLs are more susceptible to security 
vulnerabilities, as no restrictions to I/O or memory access are 
imposed. In theory, any executable tailored for any purpose 
can be wrapped in TumorML markup. 

Constraining the descriptive domain is one way to address 
these drawbacks, and domain-specific languages (DSLs) can 
be used for model description. With a more restrictive 
description language, we can more easily validate the 
methods used. By only making available certain I/O to the 
model developer (i.e. being able to read and write a certain set 
of data types) we may be able to limit erroneous and 

Modular Markup for Simulating Vascular Tumour Growth* 
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malicious exploitation of model code. The rest of this paper 
describes a domain-specific framework that is based on the 
reverse engineering of a class of models developed by 
Alarcón et al, looking specifically at how tumours stimulate 
vascular growth to enable proliferation of cancerous cells. A 
DSL is presented to orchestrate the framework, and we 
describe how to combine our DSL together with TumorML. 

II. SIMULATING VASCULAR TUMOUR GROWTH 

Vascularisation of a tumour marks the transition of that 
tumour from being essentially harmless to increasingly 
invasive and eventually fatal [9]. Tumours during the 
avascular growth stage are typically manageable and 
relatively harmless. They are limited in size due to the lack of 
nutrients available to fuel their proliferation. However, once a 
tumour grows too large to be supported by the oxygen 
supplied from existing vasculature, the tumour cells secrete 
various angiogenic growth factors, including tumour 
angiogenesis factors (TAFs). TAFs diffuse through the 
healthy tissue surrounding the tumour and upon reaching a 
blood vessel will stimulate vascular growth towards the 
tumour. Over time the vascular network evolves to a state in 
which the level of nutrients and oxygen in the tissue 
surrounding the tumour have increased sufficiently to allow 
for further growth of the tumour. Multiscale models are 
commonplace in biological modelling, as they also are within 
the domain of cancer modelling. Modelling tumour growth 
involves the integration of a number of biological models 
concerning different processes as part of a bigger picture. 
Each model may also integrate different mathematical 
techniques to adequately model these processes [10].  

 

 

Figure 1.  UML class diagram illustrating the OO framework’s key 

complex data structures contained within the Simulation controller object.  

The University of Oxford’s Department of Computer 
Science, in conjunction with the Centre for Collaborative 
Applied Mathematics and the Centre for Mathematical 
Biology, is actively developing an object-oriented (OO) 
modelling framework for implementing hybrid and multiscale 
models of vascular tumour growth. The focus of the 
framework development is to apply software engineering 
techniques that allow it to be highly reusable and extensible – 
characteristics that have, to the best of our knowledge, eluded 
the majority of biological modelling software frameworks to 
date.  

Work is underway to reverse-engineer a family of models 
published by Tomás Alarcón, Helen Byrne, Philip Maini and 
collaborators, in particular the family of models discussed and 
extended in [14], to extract and abstract the common 
methodologies and data structures involved in the 
development of simulations based on vascular tumour growth 
models. The OO framework has been developed based on 
these abstractions, and a functioning implementation of the 
framework is being developed in C++. The framework is 
presented fully by Anthony J. Connor et al in a forthcoming 
paper [16].  

 

 

Figure 2.  UML class diagram illustrating the containment hierarchy of 
functional aspects within the OO framework. 

The OO framework consists of a set of commonly used 
complex data structures modelling relevant biological entities 
(Figure 1) and functional aspects that allow modular coupling 
of different algorithms (Figure 2) by employing the visitor 
and strategy design patterns [11], [12]. These design patterns 
decouple the biological entities from the algorithms that act 
on them. This allows algorithm code to be easily replaced 
without modifying the framework itself. 

 Figure 1 shows the static Simulation class containing a 
Diffusibles object that holds a list of diffusible chemicals 
within the simulated environment. A CellPopulation object 
contains a collection of Cell objects to represent the 
population of normal and cancerous cells. Finally, a 
VesselNetwork object models the vascular network as a 
graph of Vessel objects. Each of these is attached to a lattice-
based mesh structure, OnLatticeMesh. Figure 2 illustrates 
each of the different abstract algorithm or model container 
classes. These are subclassed with concrete implementations 
by model developers. The implementations are substituted for 
these abstract classes at runtime. The Simulation class acts as 
a controller with an encapsulated algorithm that behaves 
according to each of the component classes’ implemented 
code (i.e. based on code substituted for 
DiffusionCalculator, CellMover, CellKiller etc.). 

 Developing a framework with common abstractions of 
biological entities, and decoupling entities from algorithms 
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that model the different biological processes brings two key 
advantages. Firstly, it provides model developers a modular 
environment in which submodels and individual algorithms 
can be tested in isolation before being integrated into larger 
models of vascular tumour growth. Secondly, taking an OO 
approach to abstracting common structures and processes of 
vascular tumour growth models should make models more 
understandable for biologists and mathematical modellers 
who are not well versed in computer programming. 

III. MODULAR MARKUP USING TUMORML 

We are currently working with modellers to develop the 
next level of more detailed abstraction in the structural, 
mathematical, and algorithmic descriptions of the inner 
workings of models. While significant effort might be 
required to port existing models to TumorML, providing 
multiple levels of abstractive notation in our markup allows 
us to wrap existing models in early versions of TumorML as 
well as publish new models with an evolving markup 
specification. Version 1.0 of the TumorML specification is 
publicly available from the TUMOR website (www.tumor-
project.eu) and the latest XML schema is available open-
source from the SourceForge website 
(www.sf.net/p/tumorml). 

To support our OO framework for modelling vascular 
tumour growth, we are developing a DSL that can be cross-
compiled into C++ code compatible with the implementation 
of our framework. Scientists will implement their models 
within the constraints of the framework using the DSL script. 
This will bring several benefits. Adopting a standard view of 
the most common abstractions (e.g. cells, populations of cells, 
intracellular chemicals), the most typical behaviours of this 
class of model (e.g. moving cells, killing cells, subcellular 
biochemical processes), and I/O using standard formats, 
means that different models developed within the framework 
can more easily be validated. Limiting the functionality of the 
DSL also reduces the risk of malicious code being introduced 
into model codes. 

Figure 3.  A DSL script fragment illustrating how our OO framework 

extends the SubCellularModel abstract class allowing model developers 
to provide their own concrete implementation. 

Figure 3 illustrates how to implement a new subcellular 
model within the OO framework. This model at runtime is 
substituted where the SubCellularModel class is defined 
within the containment hierarchy. In this example, a model by 
Alarcón et al described in [13] is used as a determinant for the 
subcellular conditions for cell death and proliferation. The 
script encapsulated here is executed at each time step for each 

Cell object in the cell population, as determined by the 

Simulation controller. 

Figure 4.  DSL code fragment shows how a subcellular model, such as that 

illustrated in figure 3, can be attached to a simulation.  

To show how we can augment DSL script with XML 
markup, we have extended the TumorML schema to allow the 
scripts to be embedded into TumorML’s implementation 
element within <script> tags, replacing the XML elements 
that are normally used for publishing conventional source 
code and pre-compiled binary files. 

Figure 5.  An example of DSL script embedded within a TumorML 

document, illustrating parameter mapping from the XML declaration to the 

script reference for the input parameter simulationRunTime. Note some 

elements have been omitted for clarity. 

For accessing externalized parameters, the framework 
utilises TumorML’s parameter definitions. The framework 
reads and parses the XML parameter definitions that describe 
the inputs and outputs for computational models and builds an 
in-memory parameter map, where referencing parameters 
using string-based labels retrieves values that can be inserted 
into a model’s script. This provides us with a standard method 
of executing model code when using a variable range of 
parameter values. The TumorML parameter definition also 
includes metadata describing the command-line data type, 
quantity/unit type, and optionally an identifier referencing an 
externally accessed biological ontology such as SBO, the 
Systems Biology Ontology (www.ebi.ac.uk/sbo/), or 
BioPAX, Biological Pathway Exchange (www.biopax.org). 
This gives us a mechanism by which pre-runtime checks can 
be carried out, as well as enabling intelligent checks to be 
performed when combining code modules and providing 
extra human readable information to model authoring, 

Alarcon05OxygenDependentModel extends SubCellularModel { 

   ... 

   // When p53 concentration exceeds threshold, kill cell. 

   if (Cell.getChemicalConcentration(Chemical.p53) > 

Parameters.normalCellDeathThresholdConcentration) 

      Cell.kill(); 

   // When cycle time exceeds divide time, flag cell to divide. 

   if (Cell.cellCycleTime >= Parameters.cellDivideTime) { 

      // Flag cell to divide. 

      Cell.divide(); 

      // Reset the cell cycle time of this cell. 

      Cell.setCellCycleTime(Cell.cellCycleTime - 

Parameters.cellDivideTime); 

      } 

   } 

} 

 

<tumorml xmlns=”http://www.cs.ox.ac.uk/tumorml/1.0s” id=”Al05> 

   <header> 

      <title>Vascular Tumour Growth Model Example</title> 

      ... 

   </header> 

   <model> 

      <parameters> 

         <in name=”simulationRunTime” optional=”false”> 

             <value type=”int” unit=”second” /> 

         </in> 

         ... 

      </parameters> 

      <implementation> 

          <script> 

             ... 

             Simulation.setSubCellularModel(Alarcon05OxygenD... 

             Simulation.setDuration(Parameters.simulationRun... 

             ... 

             Simulation.run(); 

          </script> 

      </implementation> 

   </model> 

</tumorml> 

... 

Simulation.setSubCellularModel(Alarcon05OxygenDependentModel); 

Simulation.setDuration(Parameters.simulationRunTime); 

Simulation.setTimestep(Parameters.timestep); 

 

// Create the lattice and add some diffusables chemicals to the 

environment. 

l = Lattice(Parameters.siteSize, Parameters.domainSize_x, 

Parameters.domainSize_y); 

d = Diffusables(lattice); 

d.addSpecies(Chemical.VEGF); 

d.addSpecies(Chemical.Oxygen); 

... 

Simulation.run(); // go! 

 

http://www.tumor-project.eu/
http://www.tumor-project.eu/
http://www.sf.net/p/tumorml
http://www.ebi.ac.uk/sbo/
http://www.biopax.org/
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workflow composition, and clinical diagnosis or research 
tools. 

Illustrated by Figure 5, the static Simulation object is set 
up with any predefined settings through hard-coded default 
values or linked externally via a parameters definition such as 
that in TumorML whereby they are accessed in the DSL 
script with the Parameters keyword. In this example, the 
XML input parameter given the name simulationRunTime 
maps directly to the DSL script referenced by 
Parameters.simulationRunTime. Variables can also be 
declared for brevity, as shown with the Lattice and 
Diffusibles objects referenced by l and d respectively. The 
Chemical keyword is used to refer to a statically defined 
enumeration of chemicals, including TAFs. In this example 
we make reference to the vascular endothelial growth factor 
(Chemical.VEGF) protein and oxygen (Chemical.Oxygen). 
The mathematics and algorithms used in the framework are 
described with syntax similar to that of ECMAScript [15], 
which many of the scripting conventions in our DSL are 
based on. As our DSL is at an experimental stage, a full 
specification will be published at a later time.  

IV. RESULTS 

We have demonstrated how domain-specific markup can 

link transparently with model implementations by describing 

vascular tumour growth with our own defined DSL. Our use-

case driven design process has yielded a DSL that includes 
conventional programming constructs, modern OO 

methodologies, including design patterns, and access to 

numerical libraries.  

 

 
 

 
Figure 6.  A pair of snapshots showing a two-dimensional simulation of 

vascular tumour growth generated from our OO framework. 

 At present, our OO framework can produce simulations of 

vascular tumour growth where we reproduce the family of 

models that the work in [14] builds on. Figure 6 shows two 

snapshots taken from a simulation implemented within our 

framework coupling a number of models including an 

oxygen dependant model described in [13] by Alarcón et al. 

On the left hand side cell populations are visualized where 

cancerous cells are depicted in red and healthy cells in blue. 

The centre panel shows the oxygen distribution. The right 

hand side illustrates the evolving vessel network with vessel 
radii and hematocrit (packed cell volume or erythrocyte 

volume fraction) levels. The models that produce these 

simulations can be written in our DSL and wrapped up in 

TumorML markup. The models are then cross-compiled to 

an efficient C++ implementation using the OO framework.  

V. CONCLUSIONS 

By introducing a DSL into TumorML markup, we have 
shown how domain-specific markup can link transparently 
with model codes to describe models of vascular tumour 
growth. At present, our OO framework can reproduce 
simulations of vascular tumour growth such as that pictured in 
Figure 6. In this paper we have described the OO framework 
being developed for modelling vascular tumour growth, and 
present initial work on a DSL for orchestrating the 
framework. Integrating our DSL with TumorML allows us to 
package models as modules, which is essential for enabling 
multiscale model composition and reuse, and for publishing 
to repositories such as the TUMOR model repository or the 
CViT Digital Model Repository. Although using a domain-
specific framework limits the scope of what can be modelled, 
we submit that wholistic description and transparency is key 
to models being adopted, reused, and further developed by the 
cancer modelling community. 
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The Health Data Ontology Trunk (HDOT). Towards an Ontological 

Representation of Cancer-related Knowledge* 

Emilio M. Sanfilippo, Ulf Schwarz, and Luc Schneider 

Abstract – Ontologies play a central role in new IT 

strategies for personalized medicine that enhance the 

communication between patients and health care 

providers. In this paper we present the Heath Data 

Ontology Trunk (HDOT) and how it is used for this 

purpose within the p-medicine project. We describe 

crucial methods in its development, in particular its 

modularity. The main benefit of a domain middle-layer 

ontology approach is that the latter can be further 

extended and specialized in different but interrelated 

modules according to more specific biomedical and 

clinical needs and requirements within the same semantic 

framework. As an example of a modular extension of 

HDOT relevant to cancer research and treatment we 

describe a first prototype of the HDOT pathological 

formation module. We demonstrate the usefulness of this 

module in two scenarios: the semantic integration of 

heterogeneous biobank metadata and the design and 

administration of Case Report Forms (CRFs).  

I. P-MEDICINE’S SEMANTIC STRATEGY 

Medicine is undergoing a revolution that is 

transforming the nature of healthcare from reactive to 

preventive and to a personalized predictive treatment. 

This transformation process has motivated the concept 

of the Virtual Physiological Human1 (VPH) that seeks 
to develop a scientific methodological and 

technological framework to enable the construction of 

models of the human body as a single complex 

dynamical system. Nevertheless, there is still the need 

for the development of a sound multidimensional 

modeling of the natural phenomenon of cancer 

supporting both clinical investigations and the emergent 

scientific, technological and medical discipline of in 

silico oncology [1]. ‘p-medicine: From data sharing and 

integration via VPH models to personalized medicine’2 

is a four-year Integrated Project co-founded under the 
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European Community’s 7th Framework Programme 

which proposes to create an infrastructure that will 
facilitate the development from current medical practice 

to personalized medicine, with particular attention on 

cancer-related information. 

In p-medicine special attention is paid to patients 

who are not just treated as passive consumers of health 

care services, but are continuously and actively 

involved in the comprehension of their health status and 

management of their clinical trials. Data integration, 

standardization and semantic interoperability in p-

medicine are ontology-driven. Data and information 

coming from different sources (mainly clinical care 

providers, both external and internal to p-medicine, 
clinical trial centers, laboratories, research institutions 

and bio-banks) are pushed into the p-medicine 

warehouse and at the same time annotation are 

generated by an annotation service using the Health 

Data Ontology Trunk (HDOT). The original data 

together with a mapping file are then stored in the p-

medicine data warehouse; the integrated data is 

converted to RDF format and stored in a triple store so 

that it can be easily exploited later for different 

purposes according to users’ needs.  

II. THE HEALTH DATA ONTOLOGY TRUNK 

(HDOT) 

The Health Data Ontology Trunk (HDOT) is being 

developed by the Institute for Formal Ontology and 

Medical Information Science (IFOMIS) of the 

University of Saarland and it is conceived as a modular 

middle-layer ontology. HDOT is being designed, 

maintained and extended using the ontology editor 

Protégé3, and is released in OWL-DL4 under the 

following web address: http://code.google.com/p/hdot/5.  

HDOT integrates under the same semantic 

umbrella (figure 1) the first version of the Basic Formal 

Ontology6 (BFO 1.1), the Relational Ontology7 (RO), 
the Information Artifact Ontology8 (IAO), the Middle 

 
3
 http://protege.stanford.edu/ 

4
 Description logic expressivity: SROIQ (D) 

5
 To explore HDOT and its modules using Protégé, you have to open 

the google code page, go to the page “source” and then to “browse”. 

Click on “trunk” on the right column; open the file you want to 

explore (hdot.owl for example), open the link “view raw file” on the 

right side of the page with Protégé.    
6
 http://obofoundry.org/cgi-bin/detail.cgi?id=bfo. BFO is currently 

undergoing an update process to BFO 2.0. However, a stable release 

of BFO 2.0 has not been released yet 
7
 http://obofoundry.org/cgi-bin/detail.cgi?id=relationship 

8
 http://obofoundry.org/cgi-bin/detail.cgi?id=information_artifact 

mailto:ulf.schwarz@ifomis.uni-saarland.de
http://code.google.com/p/hdot/
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Layer Ontology for Clinical Care9 (MLOCC) [2], parts 

of the Phenotypic Quality Ontology10 (PATO) and parts 

of the Ontology for General Medical Science11 

(OGMS). 
Most of them are part of the OBOFoundry 

initiative [3] and are widely used in the biomedical 

domain for data annotation and integration. 

HDOT is designed in a modular fashion [4] as a 

middle-layer ontology in the sense that it specifies 

upper-level domain independent classes down to the 

biomedical domain while  maintaining at the same time 

a very general semantic and axiomatic structure that can 

be further developed and specialized in different 

modules for different purposes and applications. 

Therefore a middle-layer ontology can be thought as an 
ontology whose classes are domain-driven but 

application-independent, in the sense that they 

represent general structural characteristics and 

properties of the domain without specializing them in 

very specific semantic and axiomatic features. HDOT 

is intentionally developed, maintained and further 

extended as a modular ontology, so that we have the 

possibility to add more information and introduce new 

subclasses according to users’ needs without ever 

having to alter its overall structure. One core 

requirement put on HDOT is that it is broad enough to 

contain all general classes under which all necessary 
and more specific semantic content can be subsumed in 

such a way that a meaningful axiomatic relational 

structure is conferred upon those specific area of 

contents. Indeed, we can enrich the semantic content of 

different resources by subsumption under classes of 

HDOT, e.g. integrating specific parts of biomedical 

terminologies like ICD-10, the NCI thesaurus or 

SNOMED-CT, in order to enhance their formal and 

semantic constraints in a computable way.   

HDOT’s development as a middle-layer ontology is 

governed by three main related structural       
considerations in order to achieve the highest level of 

semantic interoperability between heterogeneous data 

 
9
 http://www.ifomis.org/chronious/mlocc 

10
 http://obofoundry.org/cgi-bin/detail.cgi?id=quality 

11
 http://obofoundry.org/cgi-bin/detail.cgi?id=OGMS 

sources, maintain a high level of ontological soundness 

and ensure a high degree of expandability:  

1. The HDOT level of generality is designed in such 

a way that HDOT classes and relations cover all 
areas of the health-care domain, i.e. there is a 

meaningful ontologically well-defined HDOT 

super-class under which all necessary parts and 

pieces of semantic data descriptions (annotations, 

metadata) can be directly subsumed or otherwise 

represented12. The semantics of HDOT central 

body is supposed to change in the further 

development of the project only in case problems 

related to HDOT’s application to the project itself 

or clinicians’ needs emerge; 

 
2. The core ontological structure integrates different 

modular ontologies at different levels of 

granularity. Each class is provided with a deep 

axiomatization, which guarantees to the users’ 

work-flow high degrees of semantic representation 

and syntactic reasoning, together with the ability to 

construct defined classes and composite terms.  

 

3. HDOT’s modules for specific applications can be 

obtained by stating further specifications of HDOT 

classes, i.e. by inserting subclasses under existing 

HDOT slots (super-classes). We thus accord with 
Parent and Spaccapietra [5] who consider an 

ontological module to be a smaller portion of an 

ontology that is intended to be a subset of a 

broader knowledge organization. 

The most important owl-class axioms are governed 

by the ordering relation of subsumption between 

classes while most of the other axioms originate from 

the following four considerations:  (1) To provide 

machine readable and computable class constructions; 

(2) to provide ontologically sound relations between 

classes and the corresponding labels to enable the 
desired reasoning and inference capabilities; (3) to 

provide the basis for the composition of biomedical 

complex concepts (e.g. ‘blood pressure increase’, 

‘resection of tumour in kidney’) by axiomatizing the 

 
12

 However, it is worth noting that HDOT is currently under 

development, therefore it is very probable that the domain coverage 

is not yet complete. 

 

Figure 1 – HDOT’s modular structure 
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necessary relations between HDOT’s constituents; (4) 
to include relations which bridge different levels of 

granularity (e.g. “part_of” or “contains”). 

Since p-medicine is presently focused on the 

computational representation of data about neoplasms, 

we extended HDOT with a first module particularly 

suitable for the representation of cancer-related 

information.  

III. PATHOLOGICAL FORMATION MODULE UNDER 

HDOT 

The HDOT pathological formation module 

specifies in more details information about cancer 
integrating the ACGT Master Ontology (ACGT MO) 

[6]. We decided to integrate this ontology for four main 

reasons: 1) its domain coverage is very close to HDOT; 

2) its axiomatic structure is very similar to HDOT; 3) it 

had undergone an evaluation process that is very well 

documented [7]; 4) p-medicine is accounted as the 

follow-up of the ACGT project13. 

Following the ontological approach of OGMS and 

specifying its structure according to our needs, we 

reused the class OGMS_0000077 ‘pathological 

formation’ and specialized it with the ACGT MO 

subclass ‘neoplasm’. We adhered to the biomedical 
specification of BFO’s class ‘material entity’ 

throughout this extension process (figure 2), which was 

possible because both OGMS and ACGT MO are built 

on BFO. 

From an axiomatic point of view, we thus consider 

a pathological formation in HDOT as an enduring 

material entity which is clinically abnormal and is the 

outcome of a pathological process which occurs in a 

particular region the human body and realizes a 

dispositional disease such as cancer [8].  

Therefore we need a three-fold ontological 
representation: 

 The disease (e.g. cancer) as a BFO 

disposition; 

 
13

 http://eu-acgt.org/ 

 The pathological process as a BFO occurent 
which in this case realizes a disease; 

 The pathological formation as a BFO material 

entity as an outcome of the pathological 

process (e.g. neoplasm). 

In owl-axioms these levels can be described in the 

following form: 

PathologicalFormation isSubclassOf some 

MaterialEntity and isOutcomeOf some 

(PathologicalProcess and (realizes some Disposition)), 

where a pathological formation, as well as a 

pathological process are regarded as clinically 
abnormal in the sense that they are not part of the life 

plan of an organism of the relevant type (unlike aging, 

pregnancy or menopause) [8]. 

 

IV. TWO SCENARIOS 

A. Mapping metadata of  biobanks to hdot 

Biobanks represent key resources for clinico-

genomic and personalized medical research. It is 

crucial that scientists can securely access and share 

high quality information on biomaterial and related 

metadata, resulting in the need to integrate biobanks 

into larger biomedical ICT infrastructures. This 

integration presupposes semantic interoperability 

between the metadata used in the different biobank 

information systems. This cannot be achieved by 

lexical mappings only because even if one and the 

same term or expression occurs in different biobank 

metadata sets, there is no guarantee that this term is 
used coherently in the same sense. 

Therefore, semantic interoperability between 

heterogeneous biobank metadata can be assured by 

mapping the latter onto a biomedical middle-layer 

ontology such as HDOT. Its semantic and axiomatic 

framework would help scientists to search for and 

request information on biomaterial more accurately for 

their specific research projects, without running the 

risk of semantic and axiomatic incompatibilities  

between their different knowledge bases. In addition, 

 

Figure 2 – Pathological formation class in HDOT 
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HDOT could allow biobank owners to share their 

biomaterial and corresponding data stored in their 

databases within the same ontological structure, 

bringing the benefits of semantic integration among the 

whole scientific community.  

B. Pre-coordinated annotation of data from case 

report forms (CRFs) 

A similar data integration problem occurs in the 

design and administration of case report forms (CRFs). 

They come from heterogeneous sources and are used to 

collect a plethora of information. Data gathered in 

CRFs is often annotated after the collection process 

and rarely a common semantic framework is used. The 

exploitation of HDOT already in the design phase of a 

CRF can ensure adequate data annotations for the 

collected data in a pre-coordinated way. We showed 

elsewhere [9] that CRF questions can be generated 
directly from ontological axioms utilizing relational 

paths in an ontology.   

V. OTHER ONTOLOGICAL APPROACHES  

In the current state of the art of ontological 

engineering for the biomedical domain, there are 

several resources representing data about cancer and 

tumour. The BioPortal14, a service maintained by the 

US National Center for Biomedical Ontologies to 

access freely biomedical ontologies, contains 326 

ontologies and 5,232,009 terms15. Looking for 

‘neoplasm’, it retrieves 145 results in 24 resources16. 
Among these, only 10 are proper ontologies in strict 

sense [3], while the others are terminologies, coding 

systems and thesauri. Unfortunately, most of the latter 

suffer from deep ontological flaws such as blurring 

important distinctions between different real world 

entities, clinical findings and diagnosis, as well as 

between biological processes and dispositional entities. 

Thus, we argue that using BioPortal services at face 

value and without further processing and elaboration 

can seriously infringe the ontological soundness of 

semantic data integration approaches17. 

VI. CONCLUSIONS 

Personalized medicine is currently facing the 

problem of making patients directly involved in their 

health care. New IT strategies are currently explored to 

enhance the communication between patients and 

health care providers. Ontologies play a central role in 

this framework, because they help in many ways, such 

as making people’s assumptions explicit and 

representing the complexity of the biomedical domain 

in a computable language, thus making data sharing 

more efficient. In this paper we present the Health Data 

Ontology Trunk (HDOT). We describe crucial methods 

 
14

 http://bioportal.bioontology.org/ 
15

 BioPortal statistics, from the BioPortal website, last access on 

09.10.2012 
16

http://bioportal.bioontology.org/search?query=neoplasm&commit

=Search, last access on 09.10.2012 
17

 Projects like VPH Share are currently facing these issues 

in its development in particular its modularity and the 

benefits of a middle-layer ontological approach. 

Indeed, a domain middle-layer ontology like HDOT 

can be further extended and specialized in different but 

interrelated modules according to more specific 

biomedical and clinical needs and requirements while 

always maintaining one and the same axiomatic 

framework. One major advantage of this approach is 

that we can specify necessary top-class axioms in the 

middle-layer that are automatically inherited by 

appended subclasses. In this way we provide a minimal 
set of semantic constraints on the use of biomedical 

and clinical terms and expressions. As an example of a 

modular extension of HDOT we present a first 

prototype of the HDOT pathological formation module 

whose semantics and axiomatic structure are 

particularly focused on the ontological representation 

of cancer-related information. We demonstrate the 

usefulness of our approach in two scenarios. 
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Abstract— In order to deal with the inherent complexity in 

cancer new computational models are being developed to aid 

both biological discovery and clinical medicine. The 

development of these in silico models is facilitated by rapidly 

advancing experimental and analytical tools that generate 

information-rich, high-throughput biological data. In this 

paper we propose the use of the scientific workflows for the 

integration of multilevel in silico models and we describe a 

technical infrastructure built on state of the art web 

technologies for the implementation of these workflows. 

I. INTRODUCTION 

Cancer is an intrinsically complex and heterogeneous 
disease, making it particularly amenable to systems biology 
approaches [1]. Computational biomodelling has emerged 
as a new field in the crossroads of molecular biology, 
biochemistry, computer science, and mathematics to 
provide a better understanding and simulation of key 
biological processes in living organisms [2]. So far, 
significant but highly fragmented efforts have been made 
on both sides of the Atlantic to develop and use models of 
pathophysiology in order to better understand human 
function and promote individualized, patient-specific 
optimization of cancer treatment. The TUMOR project 
(http://tumor-project.eu), an EU FP7 funded project, is 
developing a European clinically oriented semantic-layered 
cancer digital model repository from existing EU Virtual 
Physiological Human (VPH) related projects designed to 
be interoperable with the US grid enabled semantic-layered 
digital model repository platform at CViT which is 
NIH/NCI-caGRID compatible. Models and data will drive 
advances in cancer modeling with the ultimate goal to 
build an integrated, interoperable transatlantic research 
environment offering the best available models and tools 
for clinically oriented cancer modeling and serving as an 
international validation/ clinical translation platform for 
predictive, in silico oncology. 

The main users of such a system are the VPH modelers 
and biomedical researchers that are focusing on the 
comprehension of the biological processes and interactions 
in nature and their simulations through computational 
models. The primary concerns of these users are: 

 To share and reuse biological and physiological 
models. 

 To share and reuse biomedical data. 
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Fax: +30 2810 391428) 

 To plug (combine) models together to create 
larger, more comprehensive models without 
excessive demands for user input. 

 To execute (run) the simulation models, trace their 
execution, and keep an archive of the results and 
the history of these executions. 

In order to simulate cancer growth and simulate the 
efficacy of specific treatments in a more holistic way 
different models with diverse biocomplexity levels and 
directions (bottom-up, top-down) should to be linked 
together. Such a linking can be done manually by the 
researcher but we think that it is important to have an 
intuitive user interface to support the building of these 
hypermodels. To this end, in this paper we propose the 
paradigm of scientific workflows as the one to follow. 

II. SCIENTIFIC WORKFLOWS 

According to the Workflow Management Coalition 
(WfMC), workflows can be defined as "the automation of a 
business process, in whole or part, during which 
documents, information or tasks are passed from one 
participant to another for action, according to a set of 
procedural rules" [3]. This definition perfectly applies to 
workflows for the business community. More generally a 
workflow can be described as a sequence of operations or 
tasks needed to manage a business process or a 
computational activity. The latter definition can also be 
applied to scientific workflows, which are meant to 
decompose complex scientific experiments into a series of 
repetitive computational steps that could be run on 
supercomputers or distributed on a cloud system [4]. In our 
domain of interest these computational tasks correspond to 
in silico models and other computational tools that are 
executed in pipelines (or more generally in graphs) and 
communicate by exchanging data and parameter values. 

There are already some popular workflow management 
systems, especially for bioinformatics. Taverna [5] is 
probably the most well-known one and recently has 
augmented its desktop version with a social networking 
website where the users can share their Taverna based 
workflows [6]. A complete web based workflow 
management system is Galaxy that features a user friendly, 
intuitive, "drag-and-drop" workflow editing functionality 
[7]. In this paper we describe a prototype for the TUMOR 
workflow editing and executing environment. This work 
revisits and extends similar efforts [8] that we made in past 
projects, focusing more on the modern web technologies 
and the requirements and the challenges of the VPH 
research. The decision of building a new workflow 
environment instead of reusing any of the existing ones 
was made after the evaluation of the available workflow 
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management systems and the study of the TUMOR 
requirements. The most important factor for this decision 
was the particular architectural considerations and more 
specifically the requirements for integrating different 
model repositories with dynamic content that is frequently 
updated and different access restrictions. The adoption of a 
full web based deployment approach was also very 
important for this decision. 

III. ARCHITECTURE 

The TUMOR environment is built as an online 
platform where its services and components are accessible 
over the World Wide Web [9]. The architecture therefore is 
designed with "service orientation" in mind, i.e. the 
software components expose a Web Service programmatic 
interface [10]. 

As a technical platform, the TUMOR environment 
consists of the following components (Fig. 1): 

 The European Model and Data Repository: This is 
the "main" model repository, located in Europe. In 
addition to storing the cancer models of the 
European users and their anonymized data, this 
repository also maintains the users profile 
information. 

 The US Model Repository: This is the American 
model repository, located in the US and operated 
by CViT. This is where US-CViT users store their 
models and data. It can be accessed from the 
European side but only the models can be 
transferred, due to the legal and ethical 
requirements. 

 The Workflow Editing and Enactment 
environment, which is the web based application 
that allows the construction of simulation 
experiments through the linking of the available 
cancer models. In order to do so, the Workflow 
Environment accesses the EU and US model 
repositories and selectively retrieves models from 
their contents. It is hosted inside the EU and 
therefore it has access to the data stored in the EU 
repository. Nevertheless since it is a web 
application, it has to make authorization decisions 
based on the users profile in order to restrict the 

data access mechanisms only to the European 
users. 

 The Common Access Point (CAP, for short): This 
is the main "entrance" to the platform. It is a web 
portal for interacting with the majority of the 
TUMOR services. Behind this portal there will be 
the EU Model and Data repositories and also the 
users profile database. 

The model repositories are the primary sources for 
computational tasks in the workflow environment. The 
models are described in TumorML [11], an open markup 
language that provides descriptions of the input parameters 
and data of the models along side with curation (e.g. the 
creator of the model and his/her organization), 
classification (e.g. type of cancer), and other metadata. 

IV. THE TUMOR WORKFLOW ENVIRONMENT 

The workflow environment consists of two main 
components: 

 The workflow editor (or designer) is a web 
application, accessible through the users' web 
browser. This is the graphical front-end for the 
editing of the workflows, the invocation of their 
execution, and the visualization of the results. A 
depiction of its interface can be found in Fig. 2. 

 The workflow engine is the server side, which is 
responsible for the management and the execution 
of the workflows, the communication with the 
model repositories, etc. 

This setting presents the workflow environment as a 
typical "Software as a Service" [12]. 

A. Functionality of the Workflow Editor 

The workflow editor is the visual front-end to the 
application. It provides a "faceted" navigation and search 
[13] in the contents of the model repositories using the 
TumorML metadata. The following are the TumorML 
compliant criteria for filtering the models: 

 Cancer type, e.g. Glioblastoma, lung, or breast. 
This allows to find models that are relevant only 
for the specific type of cancer. 

 Mathematics type, e.g. whether discrete or 
continuous mathematic formulations are used for 
the implementation of the models 

 Bio-complexity direction, to describe the 
macroscopic ("top down"), mesoscopic ("middle 
out"), microscopic ("bottom up") models 

 Materialization model, i.e whether the tumor is 
assumed to be solid or liquid 

 Homogeneity type, which accounts for the 
homogeneous or heterogeneous status of the 
simulated tumor. 

Using these criteria the user is able to filter and select 
the ones that are more interesting, while free text search on 
models name and description is also supported. After 

 
Figure 1 The TUMOR deployment architecture 
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selecting a model, the user can be included in a new or 
existing workflow and a visual representation of it appears 
in the central drawing area (the "canvas", as shown in Fig. 
2). The user is then able to get a lot more information about 
the model, originating from its TumorML description. This 
information includes a free text description of the model, 
and the information about its required or optional input 
parameters and its outputs. 

Easy and intuitive construction of the workflow is 
supported, by allowing the user to connect the models by 
dragging and connecting their inputs and outputs. Each 
input parameter (or possibly an output/result of a model) 
has a value from a restricted set of atomic datatypes, such 
as "integer", "float", and "string". The workflow editor 
makes sure that only compliant parameters are connected 
together and in fact it helps the user by providing a visual 
hint for the "matching" parameters when a user "drags" a 
connection. Another case where the workflow editor 
provides data type based matching information is when the 
user selects a model in the workflow drawing area. When 
this happens, the workflow backend checks whether the 
model requires some patient (anonymized) data and 
provides a suggestion for the user to include the matching 
data sets in the workflow and "connect" them with the 
model. The information for the matching datasets is of 
course provided by the models repository. 

The user has always an immediate view of the model 
"readiness" to be executed. When the user selects "Run" 
from the menu he/she is presented with a form where all 
the parameters from all the models in the workflow are 
shown. The user can then provide explicit values for the 
parameters lacking one and after that trigger the execution. 
The execution of course happens in the background in the 
server side but the execution status, i.e. what models are 
currently running, is always available: the currently 
running models are shown "blinking" so that the user has 
immediate feedback on the execution progress. When the 
workflow has finished the user is presented with the results 
window where the results are shown inline is this can be 
the case (e.g. in the case of images, or plain numeric 
values). In addition to the final results of the workflow the 
user is able to see the immediate ones i.e. the output of the 

models that were in the start or the middle of the execution 
pipeline. 

With respect to the implementation, the editor is using a 
lot of Javascript, and specialized Javascript libraries such 
as Jquery. Additionally a good use of of HTML5 [14] 
technologies is in place: 

 Web Sockets [15] are used to support real time 
communications between the server and the client 
side. An example of such communication is during 
the monitoring of the execution status of a 
workflow. This almost realtime communication is 
delivered through the "web socket" connection so 
that any HTTP induced delays are eliminated. 

 The WebStorage API [16] is used for the persistent 
data storage of key-value pair data. This is used for 
storing the local "session" of the user, so that 
refreshes to the drawing area or switching back and 
forth in other pages does not lose the content of the 
page. This can also be used to support undo/redo 
actions irrespective of the user leaving the page 
and coming back later. It is important to note that 
the information is stored locally - not in the server 
side - so saving and loading the "state" is quick and 
does not impose any burden (storage-wise) in the 
server. One of the disadvantages of this approach 
is that there are limitations on the size of the web 
storage imposed by the browsers (normally, around 
5MBs). 

B. Functionality of the Workflow Engine 

The workflow engine is the server side of the 
environment and its main responsibilities are: 

 The authentication of the users. This is 
subsequently delegated in the model repositories 
using the oAuth protocol1, an open web based 
standard for authentication and authorization. 

 The communication with the model repositories to 
retrieve the TumorML descriptions of the models 

 
1
 http://oauth.org  

 
Figure 2. The main drawing area of the TUMOR workflow designer 
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and the corresponding executables and other data 
needed. This is implemented using SOAP based 
web services and REST [17]. 

 The storage and retrieval of user workflows. The 
persistence of the workflows is supported by a 
MongoDB database server2. 

 The execution of the workflows. The TumorML 
descriptions retrieved from the model repositories 
provide detailed information about the inputs and 
the outputs of each model. Using this information 
the workflow engine is the "orchestrator" of the 
models executions, deciding what to run next, and 
how to pass the data from the one model to the 
next. 

The server side is implemented in Node.js, which is 
Javascript framework for networking applications based on 
the V8 javascript engine used in the Google Chrome 
browser and Chromium, its open source version [18]. 
Node.js is event based and (by default) single threaded but 
it is highly praised for its scalability for IO bound 
applications, e.g. network proxies and the majority of the 
web applications. We believe that the Workflow Engine is 
a perfect example for this type of applications since the 
main computationally heavy tasks are the models 
themselves at runtime. In essence, the models are executed 
in separate processes, as standalone command line 
executables, so this has no impact on the main workflow 
engine process. Of course the models should have been 
implemented like this, i.e standalone executables, which 
somehow restricts the model implementers. But in fact the 
approach is general because in TumorML there is 
information about how to get a whole "package" of the 
model that contains the required executables, libraries etc. 
and the command that the workflow engine or a human 
user needs to run in order to execute the model. In this way 
even Matlab scripts can be used as implementations 
assuming that there's matlab installation on the workflow 
server side and the executable is a wrapper script around 
the invocation to the matlab runtime. 

V. CONCLUSIONS 

Scientific workflows are important technical 
infrastructure for the implementation of in silico modelling 
in cancer research. In this paper we have described the 
design and a prototype implementation of a scientific 
workflow management system to support research in this 
area. The final system will need of course to be evaluated 
and validated by the research community but in any case it 
will distributed as open source software and provided as 
open access service over the web. 
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 

Abstract—Cancer  is  the  second  leading  cause  of  death  

worldwide,  with  an  estimated  1,437,180 new cases and 

565,650 deaths in 2008 in US [1]. The  development  of  effective  

therapeutics requires  the  understanding  of  the  cellular 

mechanism  and  evolution  of  cancer.  Although several 

research groups have developed 2D and 3D  cancer  models,  

these  models  have  showed limited  success  in  treatment  

response  [2-5].  In addition to these models, we recently 

proposed a novel  3D  platform  to  study  the  cellular 

mechanism at single cell level. We are currently investigating 

the potential use of it to study the cellular  behavior  of  cancer  

cells  to  better understand the development of tumor evolution 

and metastasis and structural control, as well as external 

factors’ influence on tumors.  

I. INTRODUCTION 

Previous studies  showed  that  altered microenvironments  

in  three-dimensional  (3D) model such as cell–extracellular 

matrix interactions may enhance tumor aggressiveness [6,7]. 

However, two-dimensional  (2D)  cancer  models  are  not 

capable  of  representing  these  conditions  [8-10]. 

Furthermore,  cancer  cell  gene  expression  profiles [5]  and  

response  to  mitogenic  factors  [11]  have shown  significant  

differences  in  2D  and  3D models.  The  complexity  of  3D  

models  has  been uggested  to  be  close  to  the  in  vivo  

situation compared  to  2D  models  [12].    The  3D  cancer 
models  have  also  been  shown  to  be  effective  in 

recapitulating  some  conditions  encountered  by tumor  cells  

in  vivo,  which  may  not  be  case  in standard 2D culture 

conditions [13,14,15]. 

Furthermore,  several  recent  studies  suggested  that 3D 

cellular constructs can offer a more in-vivo like 

microenvironment than 2D monolayer cell culture. The  

biocompatible  scaffold  provides  a  similar architecture  that  

resembles  natural  extracellular matrix (ECM). This enables a 

better free diffusion of  various  materials  secreted  by  cells  

such  as nutrients,  enzymes,  and  growth  factors.  Besides, 
cells  can  also  respond  to  the  physical  topography and 

stiffness of ECM, therefore, resulting in a more native cellular 

behavior as cell adhesion, migration, and proliferation like 

that within living states.  For instance,  Martin  et  al.  [16]  

showed  that  3D prognostic  breast  cancer  signature  can  

accurately predict clinical outcome compared 2D cases across 

independent  datasets.  Therefore,  the  ability  to  in vitro  

culture  cells  in  3D  geometry  allows  
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investigation  of  cellular  behavior  in  a  more 

physiologically relevant state.  

 Although  various  3D  cancer  models  have developed,  

there  are  several  challenges  associated with  these  models.  

For  instance,  it  is  challenging for these methods to control 

the microarchitecture of the cellular construct model while 

cells are in a specific  spatial  distribution  with  microscale 

resolution  in  vivo.  Besides,  the  existing  methods have  
limited  throughput,  while  large  number  of cancer 

constructs are needed for their applications (e.g.,  screening)  

to  get  statistical  and  meaningful results. To overcome all 

these challenges, there is a growing  need  to  develop  

innovative  high throughput  3D  in  vitro  cancer  models,  

which  can regenerate  distinct  niches  under  well-defined 

conditions in a reproducible manner. 

 

II. IN VITRO SINGLE CELL APPROACH  

 

  Single  cell  analysis  finds  widespread  applications in 

cellular  development,  genomics/proteomics analysis, and 
environment-interactive signaling and so  on.  Cell  

investigations  conducted  with  large populations  of  cells  

would  only  reflect  average values,  but  not  consider  the  

nature  of  cellular heterogeneity.   

 In vitro single cell analysis techniques are emerging as  a  

powerful  method  to  unravel  cellular complexity  with  

consideration  to  cellular heterogeneity.  With  advances  in  

micro-  and nano-techniques,  many  methods  (e.g., 

microfluidics  [17],  surface  modification  [18], bioprinting 

[19], dielectrophoresis [20] and optical tweezers  [21])  have  

been  developed  to  unravel various  cellular  processes,  
such  as  cell differentiation  [22],  tumor  progression  and  

cell- cell/environment interaction [23], at the single cell 

level. However, these methods are currently based on  2D  

monolayer  cell  culture,  which  may  not recapitulate the 

native situation. Therefore, it is of great importance to 

develop an effective method for single  cell  capture  and  

analysis  in  a  3D microenvironment.  

 In  our  previous  study,  we  developed  a  simple two-step 

lithography method to generate single cell captured in a 3D 

photo-polymerizable GelMA ring at  high  throughput  [26].  

Single  cell  capture  with precise  spatial  control  and  high  
efficiency  (~ 46.4%) was achieved by adjusting gap size and 

cell concentration.  We  applied  this  method  to  capture and  

culture  single  neurons,  and  found  that  neural axons  grew  

out  in  3D  and  formed  axonal  circles. These results 

indicate that that our method could be an enabling tool to 

analyze axonal development and autapse  formation  (an  

unusual  type  of  synapse generated  by  a  neuron  on  

itself).  In  addition,  the platform allows for the isolation of 

the axons from the  neural  soma,  as  well  as  the  
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investigation  of axon  development  at  single  neuron  level,  

which may  provide  fundamental  information  relating  to 

many  cellular  processes,  such  as  axonal development,  

synaptic  plasticity  and  neural  signal transmission.   

 It is known that tumor cells’ genomes quickly become  

twisted  in  unusual  ways  as  tumor  cells evolve. These 

previous studies suggested the need for a feasible method to 
study cellular behavior of cancer  cells  (e.g.,  cancer  

heterogeneity)  in  a physiologically  relevant  state.  Our  

method  is capable  of  capturing  and  culturing  single  

cancer cells,  which  could  enable  us  investigate  the tumor-

genesis at individual cell scale, monitor the development  of  

tumor  evolution  and  metastasis, and  structural  control  as  

well  as  external factors’ influence on tumors. Recent  

advances in hydrogel chemistry  and  cell  biology  would  

enable  us  to incorporate molecules (such as 

chemoattractants or growth  factors)  to  hydrogels  to  

modulate  cellular behaviors [27]. GleMA hydrogel 

possesses a large percentage  of  functional  groups  (such  as  
carboxylic,  amino  and  hydroxyl  groups),  which allows 

GelMA  to  be  covalently  modified  or non-covalently  

mixed  with  growth  factors.  The trapping  pattern  of  our  

method  can  also  be  easily modified  by  designing  

different  photomasks  to capture  multiple  number  and  

types  of  cells  in designed capture dots of a GelMA ring. 

This could be  an  enabling  tool  for  researchers  to  study  

temporally  controlled  cell-cell  interaction,  e.g., cancer 

cell- healthy cell interaction to mimic tumor invasion.  

III. CONCLUSION 

We  believe  that  our  3D  high  throughput  neuron 

platform  can  also  be  used  for  other  cellular mechanisms.  

We  are  currently  investigating  the potential use of it to 

study the cellular behavior of cancer  cells  to  better  

understand  the  development of  tumor  evolution  and  

metastasis  and  structural control, as well as external factors’ 

influence on tumors.  
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